×

Stochastic methods for solving high-dimensional partial differential equations. (English) Zbl 07240092

Tuffin, Bruno (ed.) et al., Monte Carlo and quasi-Monte Carlo methods. MCQMC 2018. Proceedings of the 13th international conference on Monte Carlo and quasi-Monte Carlo methods in scientific computing, Rennes, France, July 1–6, 2018. Cham: Springer. Springer Proc. Math. Stat. 324, 125-141 (2020).
Summary: We propose algorithms for solving high-dimensional Partial Differential Equations (PDEs) that combine a probabilistic interpretation of PDEs, through Feynman-Kac representation, with sparse interpolation. Monte-Carlo methods and time-integration schemes are used to estimate pointwise evaluations of the solution of a PDE. We use a sequential control variates algorithm, where control variates are constructed based on successive approximations of the solution of the PDE. Two different algorithms are proposed, combining in different ways the sequential control variates algorithm and adaptive sparse interpolation. Numerical examples will illustrate the behavior of these algorithms.
For the entire collection see [Zbl 1440.65006].

MSC:

65C05 Monte Carlo methods

References:

[1] Bachmayr, M., Schneider, R., Uschmajew, A.: Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations. Found. Comput. Math. 16(6), 1423-1472 (2016) · Zbl 1357.65153 · doi:10.1007/s10208-016-9317-9
[2] Beck, C., Weinan E., Jentzen, A.: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations (2017). arXiv:1709.05963 · Zbl 1442.91116
[3] Beck, C., Becker, S., Grohs, P., Jaafari, N., Jentzen, A.: Solving stochastic differential equations and Kolmogorov equations by means of deep learning (2018). arXiv:1806.00421
[4] Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147-269 (2004) · Zbl 1118.65388
[5] Chkifa, A., Cohen, A., DeVore, R.: Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. ESAIM: Math. Model. Numer. Anal. 47(1), 253-280 (2013) · Zbl 1273.65009
[6] Chkifa, A., Cohen, A., Schwab, C.: High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found. Comput. Math. 14, 601-633 (2014) · Zbl 1298.65022
[7] Cohen, A., DeVore, R.: Approximation of high-dimensional parametric PDEs. Acta Numer. 24, 1-159 (2015) · Zbl 1320.65016 · doi:10.1017/S0962492915000033
[8] Comets, F., Meyre, T.: Calcul stochastique et modèles de diffusions-2ème éd. Dunod, Paris (2015)
[9] Friedman, A.: Stochastic Differential Equations and Applications. Academic, New York (1975) · Zbl 0323.60056
[10] Giles, M.B.: Multilevel Monte Carlo methods. Monte Carlo and Quasi-Monte Carlo Methods 2012, pp. 83-103. Springer, Berlin, Heidelberg (2013) · Zbl 1302.65004
[11] Gobet, E., Maire, S.: A spectral Monte Carlo method for the Poisson equation. Monte Carlo Methods Appl. MCMA 10(3-4), 275-285 (2004) · Zbl 1066.65007
[12] Gobet, E., Maire, S.: Sequential control variates for functionals of Markov processes. SIAM J. Numer. Anal. 43(3), 1256-1275 (2005) · Zbl 1093.65003 · doi:10.1137/040609124
[13] Gobet, E., Menozzi, S.: Stopped diffusion processes: boundary corrections and overshoot. Stoch. Process. Their Appl. 120(2), 130-162 (2010) · Zbl 1186.60077 · doi:10.1016/j.spa.2009.09.014
[14] Gobet, E.: Monte-Carlo Methods and Stochastic Processes: From Linear to Non-Linear. Chapman and Hall/CRC, Boca Raton (2016) · Zbl 1359.65012
[15] Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low- rank tensor approximation techniques. GAMM-Mitt. 36(1), 53-78 (2013) · Zbl 1279.65045 · doi:10.1002/gamm.201310004
[16] Hackbusch, W.: Numerical tensor calculus. Acta Numer. 23, 651-742 (2014) · Zbl 1396.65091 · doi:10.1017/S0962492914000087
[17] Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer Science & Business Media, Berlin (2013) · Zbl 0752.60043
[18] Maday, Y., Nguyen, N.C., Patera, A.T., et al.: A general, multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8(1), 383-404 (2009) · Zbl 1184.65020
[19] Nouy, A.: Low-rank methods for high-dimensional approximation and model order reduction. Model Reduction and Approximation (2017)
[20] Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295-2317 (2011) · Zbl 1232.15018 · doi:10.1137/090752286
[21] Shen, J., Yu, H.: Efficient spectral sparse grid methods and applications to high dimensional elliptic problems. SIAM J. Sci. Comput. 32(6), 3228-3250 (2010) · Zbl 1233.65094 · doi:10.1137/100787842
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.