×

Computers as a novel mathematical reality. III: Mersenne numbers and sums of divisors. (English) Zbl 1532.11005

Summary: Nowhere in mathematics is the progress resulting from the advent of computers as apparent as in the additive number theory. In this part, we describe the role of computers in the investigation of the oldest function studied in mathematics, the divisor sum. The disciples of Pythagoras started to systematically explore its behavior more than 2500 years ago. A description of the trajectories of this function – perfect numbers, amicable numbers, sociable numbers, and the like – constitute the contents of several problems stated over 2500 years ago, which still seem completely impenetrable. The theorem of Euclid and Euler reduces classification of even perfect numbers to Mersenne primes. After 1914 not a single new Mersenne prime was ever produced by hand, and since 1952 all of them have been discovered by computers. Using computers, now we construct hundreds or thousands times more new amicable pairs daily than were constructed by human beings over several millennia. At the end of the paper, we discuss yet another problem posed by Catalan and Dickson. 374 Refs.
For Parts II and IV, see [the author, ibid. 107, No. 3, 143–172 (2023; Zbl 1532.11004); ibid. 107, No. 3, 205–241 (2023; Zbl 07786636)].

MSC:

11-03 History of number theory
11A25 Arithmetic functions; related numbers; inversion formulas
97F60 Number theory (educational aspects)
Full Text: DOI

References:

[1] Artyukhov, M. M., On problems of the theory of amicable numbers, Acta Arith., 27, 281-291 (1975) · Zbl 0264.10004
[2] Borho, W., Lebendige Zahlen (1985), Basel: Springer, Basel · Zbl 0539.10001
[3] Vavilov, N. A., Computers as a novel mathematical reality: I. A personal account, Dokl. Math., 107, 130-141 (2023) · Zbl 1519.01027 · doi:10.1134/S1064562423700758
[4] N. A. Vavilov, “Computers as a novel mathematical reality: II. Waring’s problem,” Dokl. Math. 107 (3), (2023). · Zbl 1519.01027
[5] N. A. Vavilov, “Computers as a novel mathematical reality: IV. Goldbach’s conjecture,” Dokl. Math. 107 (3), (2023). · Zbl 07786636
[6] N. A. Vavilov and V. G. Khalin, Exercises for the Course “Mathematics and Computers,” Vol. 1: Arithmetics and Number Theory (OTsEiM, St. Petersburg, 2005) [in Russian].
[7] N. A. Vavilov and V. G. Khalin, Supplementary Exercises for the Course “Mathematics and Computers” (OTsEiM, St. Petersburg, 2007) [in Russian].
[8] Vavilov, N. A.; Khalin, V. G.; Yurkov, A. V., Mathematica for Nonmathematicians (2021), Moscow: Mosk. Tsentr Neprer. Mat. Obrazovan, Moscow
[9] Vengerova, E. V., Memuareski (2016), Moscow: Tekst, Moscow
[10] Yates, S., Repunits and Repetends (1982) · Zbl 0487.10005
[11] Gradstein, I. S., On odd perfect numbers, Mat. Sb., 32, 476-510 (1925) · JFM 51.0126.01
[12] Edwards, G. M., Fermat’s Last Theorem: A Genetic Introduction to Algebraic Number Theory (2000), New York: Springer, New York · Zbl 0904.11001
[13] Abbott, H. L.; Aull, C. E.; Brown, E.; Suryanarayana, D., Quasiperfect numbers, Acta Arith., 22, 439-447 (1973) · Zbl 0227.10009 · doi:10.4064/aa-22-4-439-447
[14] Alanen, J.; Ore, O.; Stemple, J., Systematic computations on amicable numbers, Math. Comput., 21, 242-245 (1967) · Zbl 0164.04601 · doi:10.1090/S0025-5718-1967-0222006-7
[15] Archibald, R. C., Mersenne’s numbers, Scr. Math., 3, 112-119 (1935) · Zbl 0011.29304
[16] Artuhov, M. M., On the problem of \(h\), Acta. Arith., 23, 249-255 (1972) · Zbl 0271.10007 · doi:10.4064/aa-23-3-249-255
[17] Bach, E.; Shallit, J., Algorithmic Number Theory: Efficient Algorithms (1996), Cambridge, Mass.: MIT Press, Cambridge, Mass. · Zbl 0873.11070
[18] Bang, T., Store primtal, Nordisk Mat. Tidskr., 2, 157-168 (1954) · Zbl 0056.27103
[19] Barker, C. B., Proof that the Mersenne number \({{M}_{{167}}}\), Bull. Am. Math. Soc., 51, 389 (1945) · Zbl 0060.08706 · doi:10.1090/S0002-9904-1945-08362-1
[20] Bateman, P. T.; Selfridge, J. L.; Wagstaff, S. S., The new Mersenne conjecture, Am. Math. Mon., 96, 125-128 (1989) · Zbl 0694.10005 · doi:10.1080/00029890.1989.11972155
[21] Battiato, S.; Borho, W., Are there odd amicable numbers not divisible by three?, Math. Comput., 50, 633-637 (1988) · Zbl 0644.10003 · doi:10.2307/2008630
[22] Battiato, S.; Borho, W., Breeding amicable numbers in abundance II, Math. Comput., 70, 1329-1333 (2001) · Zbl 1048.11005 · doi:10.1090/S0025-5718-00-01279-5
[23] Beck, W. E.; Najar, R. M., Reduced and augmented amicable pairs to 10^8, Fibonacci Q., 31, 295-298 (1993) · Zbl 0792.11001
[24] A. H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, 2nd ed. (Dover, New York, 1966). · Zbl 0154.04001
[25] Benito, M.; Varona, J. L., Advances in aliquot sequences, Math. Comput., 68, 389-393 (1999) · Zbl 0957.11060 · doi:10.1090/S0025-5718-99-00991-6
[26] Benito, M.; Creyaufmüller, W.; Varona, J. L.; Zimmermann, P., Aliquot sequence 3630 ends after reaching 100 digits, Exp. Math., 11, 201-206 (2002) · Zbl 1116.11326 · doi:10.1080/10586458.2002.10504686
[27] Bernhard, H. A., On the least possible odd perfect number, Am. Math. Mon., 56, 628-629 (1949) · Zbl 0034.02103 · doi:10.2307/2304736
[28] Bickmore, C. E., On the numerical factors of \({{a}^n} - 1\), Messenger Math., 25, 1-44 (1895) · JFM 26.0202.04
[29] Bickmore, C. E., On the numerical factors of \({{a}^n} - 1\), Messenger Math., 26, 1-38 (1896) · JFM 27.0139.03
[30] Blankenagel, K.; Borho, W., New amicable four-cycles II, Int. J. Math. Sci. Comput., 5, 49-51 (2015) · Zbl 1343.11003
[31] Blankenagel, K.; Borho, W.; vom Stein, A., New amicable four-cycles, Math. Comput., 72, 2071-2076 (2003) · Zbl 1027.11002 · doi:10.1090/s0025-5718-03-01489-3
[32] Borho, W., Über die Fixpunkte der \(k\), Mitt. Math. Gesellsch. Hamburg, 9, 34-48 (1969) · Zbl 0205.34802
[33] Borho, W., Bemerkung zu einer Arbeit von H.-J. Ka-nold, J. Reine Angew. Math., 243, 219-220 (1970) · Zbl 0199.36502
[34] Borho, W., On Thabit ibn Kurrah’s formula for amicable numbers, Math. Comput., 26, 571-578 (1972) · Zbl 0237.10012
[35] Borho, W., Befreundete Zahlen mit gegebener Primteileranzahl, Math. Ann., 209, 183-193 (1974) · Zbl 0272.10004 · doi:10.1007/BF01351847
[36] Borho, W., Eine Schranke für befreundete Zahlen mit gegebener Teileranzahl, Math. Nachr., 63, 297-301 (1974) · Zbl 0285.10003 · doi:10.1002/mana.3210630125
[37] Borho, W., Some large primes and amicable numbers, Math. Comput., 36, 303-304 (1981) · Zbl 0452.10009 · doi:10.1090/S0025-5718-1981-0595068-2
[38] Borho, W.; Blankenagel, K., Befreundete Zyklen, Mitt. Math. Gesellsch. Hamburg, 35, 67-75 (2015) · Zbl 1343.11003
[39] Borho, W.; Hoffmann, H., Breeding amicable numbers in abundance, Math. Comput., 46, 281-293 (1986) · Zbl 0588.10004 · doi:10.1090/S0025-5718-1986-0815849-1
[40] Bosma, W.; Kane, B., The aliquot constant, Q. J. Math., 63, 309-323 (2012) · Zbl 1259.11088 · doi:10.1093/qmath/haq050
[41] Bratley, P.; Lunnon, F.; McKay, J., Amicable numbers and their distribution, Math. Comput., 24, 431-432 (1970) · Zbl 0211.07001 · doi:10.1090/S0025-5718-1970-0271005-8
[42] Bratley, P.; McKay, J., More amicable numbers, Math. Comput., 22, 677-678 (1968) · Zbl 0164.04602 · doi:10.1090/S0025-5718-1968-0225706-9
[43] Brauer, A., On the non-existence of odd perfect numbers of form \({{p}^{\alpha }}q_1^2q_2^2 \cdots q_{{t - 1}}^2q_t^4\), Bull. Am. Math. Soc., 49, 712-718 (1943) · Zbl 0060.08709 · doi:10.1090/S0002-9904-1943-08007-X
[44] Brauer, A., Note on the non-existence of odd perfect numbers of form \({{p}^{\alpha }}q_1^2q_2^2 \cdots q_{{t - 1}}^2q_t^4\), Bull. Am. Math. Soc., 49, 937 (1943) · Zbl 0060.08710 · doi:10.1090/S0002-9904-1943-08067-6
[45] Brent, R. P.; Cohen, G. L., A new lower bound for odd perfect numbers, Math. Comput., 53, 431-437 (1989) · Zbl 0672.10006 · doi:10.1090/S0025-5718-1989-0968150-2
[46] Brent, R. P.; Cohen, G. L.; te Riele, H. J. J., Improved techniques for lower bounds for odd perfect numbers, Math. Comput., 57, 857-868 (1991) · Zbl 0736.11004 · doi:10.1090/S0025-5718-1991-1094940-3
[47] Brentjes, S.; Hogendijk, J. P., Notes on Thābit ibn Qurra and his rule for amicable numbers, Hist. Math., 16, 373-378 (1989) · Zbl 0689.01001 · doi:10.1016/0315-0860(89)90084-0
[48] Brillhart, J., Some miscellaneous factorizations, Math. Comput., 17, 447-450 (1963) · Zbl 0115.26301 · doi:10.1090/S0025-5718-63-99176-2
[49] Brillhart, J., On the factors of certain Mersenne numbers. II, Math. Comput., 18, 87-92 (1964) · Zbl 0118.04603 · doi:10.1090/S0025-5718-1964-0159776-X
[50] Brillhart, J.; Johnson, G. D., On the factors of certain Mersenne numbers, Math. Comput., 14, 365-369 (1960) · Zbl 0099.26305 · doi:10.1090/S0025-5718-1960-0123507-6
[51] Brillhart, J.; Lehmer, D. H.; Selfridge, J. L., New primality criteria and factorizations of \({{2}^m} \pm 1\), Math. Comput., 29, 620-647 (1975) · Zbl 0311.10009
[52] Brillhart, J.; Lehmer, D. H.; Selfridge, J. L.; Tuckerman, B.; Wagstaff, S. S., Factorizations of (1988), Providence, RI: Am. Math. Soc., Providence, RI · Zbl 0659.10001
[53] Brillhart, J.; Selfridge, J. L., “Some factorizations of \({{2}^n} \pm 1\), Math. Comput., 21, 751 (1967) · Zbl 0146.04903 · doi:10.1090/S0025-5718-1967-0224532-3
[54] Bruce, J. W., A really trivial proof of the Lucas-Lehmer test, Am. Math. Mon., 100, 370-371 (1993) · Zbl 0785.11056 · doi:10.1080/00029890.1993.11990414
[55] Carmichael, R. D., Note on multiply perfect numbers, Am. Math. Soc. Bull., 17, 518 (1911) · JFM 42.0236.06
[56] Catalan, E., Propositions et questions diverses, Bull. Soc. Math. France, 16, 128-129 (1888) · doi:10.24033/bsmf.366
[57] Cataldi, P. A., Trattato dè numeri perfetti (1603), Bologna: Giovanni Rossi, Bologna
[58] Cattaneo, P., Sui numeri quasiperfetti, Boll. Un. Mat. Ital., 6, 59-62 (1951) · Zbl 0042.26804
[59] Shi-Chao, C.; Hao, L., Bounds for odd \(k\), Bull. Aust. Math. Soc., 84, 475-480 (2011) · Zbl 1246.11010 · doi:10.1017/S0004972711002462
[60] Shi-Chao, C.; Hao, L., Odd multiperfect numbers, Bull. Aust. Math. Soc., 88, 56-63 (2013) · Zbl 1300.11011 · doi:10.1017/S0004972712000858
[61] Yong-Gao, C.; Cui-E, T., Improved upper bounds for odd multiperfect numbers, Bull. Aust. Math. Soc., 89, 353-359 (2014) · Zbl 1301.11004 · doi:10.1017/S0004972713000488
[62] Chishiki, Y.; Goto, T.; Ohno, Y., On the largest prime divisor of an odd harmonic number, Math. Comput., 76, 1577-1587 (2007) · Zbl 1151.11008 · doi:10.1090/S0025-5718-07-01933-3
[63] Chum, K.; Guy, R. K.; Jacobson, M. J.; Mosunov, A. S., Numerical and statistical analysis of aliquot sequences, Exp. Math., 29, 414-425 (2020) · Zbl 1468.11251 · doi:10.1080/10586458.2018.1477077
[64] Cohen, G. L., On odd perfect numbers: II. Multiperfect numbers and quasiperfect numbers, J. Aust. Math. Soc. Ser. A, 29, 369-384 (1980) · Zbl 0425.10005 · doi:10.1017/S1446788700021376
[65] Cohen, G. L., Even perfect numbers, Math. Gaz., 65, 28-30 (1981) · Zbl 0452.10004 · doi:10.2307/3617930
[66] Cohen, G. L., The non-existence of quasiperfect numbers of certain forms, Fibonacci Q., 20, 81-84 (1982) · Zbl 0477.10009
[67] Cohen, G. L., On primitive abundant numbers, J. Aust. Math. Soc. Ser. A, 34, 123-137 (1983) · Zbl 0505.10004 · doi:10.1017/S1446788700019819
[68] Cohen, G. L., On the largest component of an odd perfect number, J. Aus. Math. Soc. Ser. A, 42, 280-286 (1987) · Zbl 0612.10005 · doi:10.1017/S1446788700028251
[69] Cohen, G. L.; Gretton, S. F.; Hagis, P., Multiamicable numbers, Math. Comput., 64, 1743-1753 (1995) · Zbl 0869.11006 · doi:10.1017/S1446788700028251
[70] Cohen, G. L.; Hagis, P., Results concerning odd multiperfect numbers, Bull. Malays. Math. Soc., 8, 23-26 (1985) · Zbl 0569.10002
[71] Cohen, G. L.; Hendy, M. D., On odd multiperfect numbers, Math. Chron., 10, 57-61 (1981) · Zbl 0456.10002
[72] Cohen, G. L.; te Riele, H. J. J., “Iterating the sum-of-divisors function,” Exp. Math. 5 (2), 91-100 (1996), Errata: Exp. Math., 6, 177 (1997) · Zbl 0866.11003
[73] Cohen, G. L.; te Riele, H. J. J., On \(\phi \), Math. Comput., 67, 399-411 (1998) · Zbl 0890.11005 · doi:10.1090/S0025-5718-98-00933-8
[74] Cohen, G. L.; Sorli, R. M., On the number of distinct prime factors of an odd perfect number: Combinatorial algorithms, J. Discrete Algorithms, 1, 21-35 (2003) · Zbl 1116.11301 · doi:10.1016/S1570-8667(03)00004-2
[75] Cohen, G. L.; Sorli, R. M., Odd harmonic numbers exceed 10^24, Math. Comput., 79, 2451-2460 (2010) · Zbl 1252.11002 · doi:10.1090/S0025-5718-10-02337-9
[76] Cohen, G. L.; Sorli, R. M., On odd perfect numbers and even 3-perfect numbers, Integers, 12, 1213-1230 (2012) · Zbl 1303.11010 · doi:10.1515/integers-2012-0036
[77] Cohen, G. L.; Williams, R. J., Extensions of some results concerning odd perfect numbers, Fibonacci Q., 23, 70-76 (1985) · Zbl 0553.10006
[78] Cohen, H., On amicable and sociable numbers, Math. Comput., 24, 423-429 (1970) · Zbl 0203.35201 · doi:10.1090/S0025-5718-1970-0271004-6
[79] Cohen, H., A Course in Computational Algebraic Number Theory (1993), Berlin: Springer-Verlag, Berlin · Zbl 0786.11071 · doi:10.1007/978-3-662-02945-9
[80] Cohen, P.; Cordwell, K.; Epstein, A.; Chung-Hang, K.; Lott, A.; Miller, S. J., On near-perfect numbers, Acta Arith., 194, 341-366 (2020) · Zbl 1465.11036 · doi:10.4064/aa180821-11-10
[81] Cole, F. N., On the factoring of large numbers, Bull. Am. Math. Soc., 10, 134-137 (1903) · JFM 34.0216.04 · doi:10.1090/S0002-9904-1903-01079-9
[82] Colquitt, W. N.; Welsh, L., A new Mersenne prime, Math. Comput., 56, 867-870 (1991) · Zbl 0717.11002 · doi:10.1090/S0025-5718-1991-1068823-9
[83] Conway, J. H.; Guy, R. K., The Book of Numbers (1996), New York: Copernicus, New York · Zbl 0866.00001 · doi:10.1007/978-1-4612-4072-3
[84] Cook, R. J., Number Theory (1999), Providence, RI: Am. Math. Soc., Providence, RI
[85] Costello, P., Amicable pairs of Euler’s first form, J. Rec. Math., 10, 183-189 (1977) · Zbl 0399.10004
[86] Costello, P., Amicable pairs of the form (i, 1), Math. Comput., 56, 859-865 (1991) · Zbl 0719.11007 · doi:10.1090/S0025-5718-1991-1068822-7
[87] Costello, P.; Edmonds, R. A. C., Gaussian amicable pairs, Missouri J. Math. Sci., 30, 107-116 (2018) · Zbl 1453.11003 · doi:10.35834/mjms/1544151688
[88] Crandall, R.; Penk, M. A., A search for large twin prime pairs, Math. Comput., 33, 383-388 (1979) · Zbl 0394.10005 · doi:10.1090/S0025-5718-1979-0514834-3
[89] Crandall, R.; Pommerance, C., Prime Numbers: A Computational Perspective (2005), New York: Springer, New York · Zbl 1088.11001
[90] Cross, J. T., A note on almost perfect numbers, Math. Mag., 47, 230-231 (1974) · Zbl 0295.10007 · doi:10.2307/2689220
[91] A. Cunningham, “On Mersenne’s numbers,” Proc. London Math. Soc. s2-9 (1) (1911). · JFM 26.0203.01
[92] A. Cunningham, “On Mersenne’s numbers,” in Proceedings of the 5th International Congress of Mathematicians (Cambridge Univ. Press, Cambridge, 1913), Vol. 1, pp. 384-386; Brit. Ass. Rep. Dundee 82, 406-407 (1913). · JFM 44.0217.05
[93] Cunningham, A., On Lucas’s process applied to composite Mersenne’s numbers, London Math. Soc. Proc., 32, 17 (1919) · JFM 47.0889.05
[94] Dai, L.; Pan, H.; Tang, C., Note on odd multiperfect numbers, Bull. Aust. Math. Soc., 87, 448-451 (2013) · Zbl 1307.11007 · doi:10.1017/S0004972712000731
[95] Dandapat, G. G.; Hunsucker, J. L.; Pomerance, C., Some new results on odd perfect numbers, Pac. J. Math., 57, 359-364 (1975) · Zbl 0295.10005 · doi:10.2140/pjm.1975.57.359
[96] J. S. Devitt, R. K. Guy, and J. L. Selfridge, “Third report on aliquot sequences,” Proceedings of the 6th Manitoba Conference on Numerical Mathematics, Univ. Manitoba, Winnipeg, Man.,1976 (Congress. Numer., Winnipeg, Man., 1977), pp. 177-204. · Zbl 0476.10003
[97] Devlin, K., Mathematics: The New Golden Age (1999), New York: Columbia Univ. Press, New York · Zbl 1007.00500
[98] Dickson, L. E., Finiteness of the odd perfect and primitive abundant numbers with n, Am. J. Math., 35, 413-422 (1913) · JFM 44.0220.02 · doi:10.2307/2370405
[99] Dickson, L. E., Theorems and tables on the sum of the divisors of a number, Q. J. Math., 44, 264-296 (1913) · JFM 44.0221.02
[100] Dickson, L. E., Amicable number triples, Am. Math. Mon., 20, 84-91 (1913) · JFM 44.0247.13 · doi:10.1080/00029890.1913.11997926
[101] Dickson, L. E., History of the Theory of Numbers (1952)
[102] Dieudonné, J., Pour l’honneur de l’esprit humain. Les mathématiques aujourd’hui. Histoire et Philosophie des Sciences (1987), Paris: Librairie Hachette, Paris · Zbl 0703.00035
[103] Drake, S., The rule behind ‘Mersenne’s numbers’, Phys. Riv. Int. Stor. Sci., 13, 421-424 (1971) · Zbl 0236.01002
[104] H. Dubner, “New amicable pair record,” October 14, 1997. https://listserv.nodak.edu/scripts/wa.exe?A2= ind9710&L=NMBRTHRY&F=&S=&Pi5. Accessed November 14, 2020.
[105] Ehrman, J. R., The number of prime divisors of certain Mersenne numbers, Math. Comput., 21, 700-704 (1967) · Zbl 0161.04302 · doi:10.1090/S0025-5718-1967-0223320-1
[106] Engberg, Z.; Pollack, P., The reciprocal sum of divisors of Mersenne numbers, Acta Arith., 197, 421-440 (2021) · Zbl 1469.11380 · doi:10.4064/aa200602-11-9
[107] Erdős, P., On amicable numbers, Publ. Math. Debrecen, 4, 108-111 (1955) · Zbl 0065.02706 · doi:10.5486/PMD.1955.4.1-2.16
[108] Erdős, P., On perfect and multiply perfect numbers, Ann. Mat. Pura Appl., 42, 253-258 (1956) · Zbl 0072.27503 · doi:10.1007/BF02411879
[109] Erdős, P., On the sum \(\sum\nolimits_{d{{{|2}}^n} - 1} {{d}^{{ - 1}}}\), Isr. J. Math., 9, 43-48 (1971) · Zbl 0209.34303
[110] Erdős, P., On asymptotic properties of aliquot sequences, Math. Comput., 30, 641-645 (1976) · Zbl 0337.10005 · doi:10.1090/S0025-5718-1976-0404115-8
[111] Erdős, P.; Kiss, P.; Pomerance, C., On prime divisors of Mersenne numbers, Acta Arith., 57, 267-281 (1991) · Zbl 0733.11003 · doi:10.4064/aa-57-3-267-281
[112] Escott, E. B., Amicable numbers, Scr. Math., 12, 61-72 (1946) · Zbl 0060.08708
[113] L. Euler, “De numeris amicabilibus,” in Opuscula varii argumenti (1750), pp. 23-107.
[114] Eum, I. S., A congruence relation of the Catalan-Mersenne numbers, Indian J. Pure Appl. Math., 49, 521-526 (2018) · Zbl 1536.11049 · doi:10.1007/s13226-018-0281-8
[115] E. Fauquembergue, “Nombres de Mersenne,” Sphinx-Œdipe 9, 103-105 (1914); 15, 17-18 (1920).
[116] Fauquembergue, E., “Plus grand nombre premier connu (question 176, de G. de Rocquigny),” Interméd, Math., 24, 33 (1917) · JFM 46.0119.04
[117] Ferrier, A., Table donnant, jusqu’à 100.000, les nombres premiers et les nombres composés n’ayant pas de diviseur inférieur à 17, avec, pour chacun d’eux, son plus petit diviseur (1947), Paris: Librairie Vuibert, Paris
[118] Flammenkamp, A., New sociable number, Math. Comput., 56, 871-873 (1991) · Zbl 0717.11001 · doi:10.1090/S0025-5718-1991-1052094-3
[119] Fletcher, S.; Nielsen, P. P.; Ochem, P., Sieve methods for odd perfect numbers, Math. Comput., 81, 1753-1776 (2012) · Zbl 1268.11004 · doi:10.1090/S0025-5718-2011-02576-7
[120] Franqui, B.; García, M., Some new multiply perfect numbers, Am. Math. Mon., 60, 459-462 (1953) · Zbl 0051.27804 · doi:10.1080/00029890.1953.11988324
[121] Franqui, B.; García, M., 57 new multiply perfect numbers, Scr. Math., 20, 169-171 (1954) · Zbl 0056.03803
[122] García, M., New amicable pairs, Scr. Math., 23, 167-171 (1957) · Zbl 0088.03605
[123] M. García, “New amicable pairs of Euler’s first form with greatest common factor a prime times a power of 2,” Nieuw Arch. Wisk. 4 17 (1), 25-27 (1999). · Zbl 1126.11348
[124] M. García, “A million new amicable pairs,” J. Integer Seq. 4 (2), 01.2.6 (2001). · Zbl 1001.11002
[125] García, V., The first known type (7, 1), Math. Comput., 72, 939-940 (2003) · Zbl 1099.11001 · doi:10.1090/S0025-5718-02-01450-3
[126] García, M.; Pedersen, J. M.; te Riele, H. J. J., Amicable pairs, a survey, Fields Inst. Commun., 41, 179-196 (2004) · Zbl 1098.11004
[127] Gardner, M., Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American (1978), New York: Vintage, New York
[128] Gillies, D. B., Three new Mersenne primes and a statistical theory, Math. Comput., 18, 93-97 (1964) · Zbl 0121.28305 · doi:10.1090/S0025-5718-1964-0159774-6
[129] Gimbel, S.; Jaroma, J. H., Sylvester: Ushering in the modern era of research on odd perfect numbers, Integers: Electron. J. Combinatorial Number Theory, 3, 1-26 (2003) · Zbl 1128.01302
[130] Gioia, A. A.; Vaidya, A. M., Amicable numbers with opposite parity, Am. Math. Mon., 74, 969-973 (1967) · Zbl 0155.08205 · doi:10.2307/2315280
[131] Golubev, V. A., Nombres de Mersenne et caractères du nombre \(2\), Mathesis, 67, 257-262 (1958) · Zbl 0082.03603
[132] Good, I. J., Conjectures concerning the Mersenne numbers, Math. Comput., 9, 120-121 (1955) · Zbl 0065.02604 · doi:10.1090/S0025-5718-1955-0071444-6
[133] Goto, T.; Ohno, Y., Odd perfect numbers have a prime factor exceeding 10^8, Math. Comput., 77, 1859-1868 (2008) · Zbl 1206.11009 · doi:10.1090/S0025-5718-08-02050-4
[134] Granville, A., Number Theory Revealed: A Masterclass (2019), Providence, RI: Am. Math. Soc., Providence, RI · Zbl 1454.11002
[135] Grün, O., Über ungerade vollkommene Zahlen, Math. Z., 55, 353-354 (1952) · Zbl 0046.27107 · doi:10.1007/BF01181133
[136] A. W. P. Guy and R. K. Guy, “A record aliquot sequence,” in Mathematics of Computation 1943-1993: A Half-Century of Computational Mathematics, 50th Anniversary Symposium, Vancouver, BC,1993 (Am. Math. Soc., Providence, RI, 1994), pp. 557-559. · Zbl 0813.11074
[137] Guy, R. K., The strong law of small numbers, Am. Math. Mon., 95, 697-712 (1988) · Zbl 0658.10001 · doi:10.1080/00029890.1988.11972074
[138] Guy, R. K., Graph Theory, Combinatorics, and Applications (Kalamazoo, MI, 1988) (1991), New York: Wiley, New York
[139] Guy, R. K., The second strong law of small numbers, Math. Mag., 63, 3-20 (1990) · Zbl 0708.11001 · doi:10.1080/0025570X.1990.11977475
[140] Guy, R. K., Problem Books in Mathematics (2004), New York: Springer, New York · Zbl 1058.11001
[141] R. K. Guy, D. H. Lehmer, J. L. Selfridge, and M. C. Wunderlich, “Second report on aliquot sequences,” in Proceedings of the 3rd Manitoba Conference on Numerical Mathematics (Utilitas Math., Winnipeg, Man., 1974), pp. 357-368. · Zbl 0325.10007
[142] R. K. Guy and J. L. Selfridge, “Interim report on aliquot series,” in Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. of Manitoba, Winnipeg, Man., 1971), pp. 557-580. · Zbl 0266.10006
[143] Guy, R. K.; Selfridge, J. L., What drives an aliquot sequence?, Math. Comput., 29, 101-107 (1975) · Zbl 0296.10007 · doi:10.1090/S0025-5718-1975-0384669-X
[144] Hagis, P., On relatively prime odd amicable numbers, Math. Comput., 23, 539-543 (1969) · Zbl 0184.07103 · doi:10.1090/S0025-5718-1969-0246816-7
[145] Hagis, P., Lower bounds for relatively prime amicable numbers of opposite parity, Math. Comput., 24, 963-968 (1970) · Zbl 0213.32505 · doi:10.1090/S0025-5718-1973-0325507-9
[146] Hagis, P., Unitary amicable numbers, Math. Comput., 25, 915-918 (1971) · Zbl 0232.10004 · doi:10.1090/S0025-5718-1971-0299551-2
[147] Hagis, P., Relatively prime amicable numbers with twenty-one prime divisors, Math. Mag., 45, 21-26 (1972) · Zbl 0226.10014 · doi:10.1090/S0025-5718-1970-0276167-4
[148] Hagis, P., A lower bound for the set of odd perfect numbers, Math. Comput., 35, 1027-1031 (1973) · Zbl 0273.10005 · doi:10.1090/S0025-5718-1973-0325507-9
[149] Hagis, P., On the number of prime factors of a pair of relatively prime amicable numbers, Math. Mag., 48, 263-266 (1975) · Zbl 0318.10003 · doi:10.1080/0025570X.1975.11976508
[150] Hagis, P., On the largest prime divisor of an odd perfect number, Math. Comput., 29, 922-924 (1975) · Zbl 0307.10010 · doi:10.1090/S0025-5718-1975-0371804-2
[151] Hagis, P., Outline of a proof that every odd perfect number has at least eight prime factors, Math. Comput., 35, 1027-1031 (1980) · Zbl 0444.10004 · doi:10.1090/S0025-5718-1980-0572873-9
[152] Hagis, P., Analytic Number Theory (1981), Berlin: Springer-Verlag, Berlin · Zbl 0477.10008 · doi:10.1007/BFb0096466
[153] Hagis, P., Sketch of a proof that an odd perfect number relatively prime to 3 has at least eleven prime factors, Math. Comput., 40, 399-404 (1983) · Zbl 0506.10002 · doi:10.1090/S0025-5718-1983-0679455-1
[154] Hagis, P., Lower bounds for unitary multiperfect numbers, Fibonacci Q., 22, 140-143 (1984) · Zbl 0535.10004 · doi:10.1090/S0025-5718-1970-0276167-4
[155] Hagis, P., The third largest prime factor of an odd multiperfect number exceeds 100, Bull. Malays. Math. Soc., 9, 43-49 (1986) · Zbl 0618.10002
[156] Hagis, P., A systematic search for unitary hyperperfect numbers, Fibonacci Q., 25, 6-10 (1987) · Zbl 0611.10005
[157] Hagis, P., Odd nonunitary perfect numbers, Fibonacci Q., 28, 11-15 (1990) · Zbl 0689.10013
[158] Hagis, P., A new proof that every odd triperfect number has at least twelve prime factors. A tribute to Emil Grosswald: Number theory and related analysis, Contemp. Math., 143, 445-450 (1993) · Zbl 0786.11003 · doi:10.1090/conm/143/01011
[159] Hagis, P.; Cohen, G. L., “Some results concerning quasiperfect numbers,” J. Aust. Math. Soc, Ser. A, 33, 275-286 (1982) · Zbl 0494.10002 · doi:10.1017/S1446788700018401
[160] Hagis, P.; Cohen, G. L., Every odd perfect number has a prime factor which exceeds 10^6, Math. Comput., 67, 1323-1330 (1998) · Zbl 0973.11110 · doi:10.1090/S0025-5718-98-00982-X
[161] Hagis, P.; Lord, G., Quasi-amicable numbers, Math. Comput., 31, 608-611 (1977) · Zbl 0355.10010 · doi:10.1090/S0025-5718-1977-0434939-3
[162] Hagis, P.; McDaniel, W. L., A new result concerning the structure of odd perfect numbers, Proc. Am. Math. Soc., 32, 13-15 (1972) · Zbl 0232.10005 · doi:10.1090/S0002-9939-1972-0292740-5
[163] Hagis, P.; McDaniel, W. L., On the largest prime divisor of an odd perfect number, Math. Comput., 27, 955-957 (1973) · Zbl 0273.10006 · doi:10.1090/S0025-5718-1973-0325508-0
[164] Hagis, P.; McDaniel, W. L., On the largest prime divisor of an odd perfect number II, Math. Comput., 29, 922-924 (1975) · Zbl 0307.10010 · doi:10.1090/S0025-5718-1975-0371804-2
[165] Harborth, H., Eine Bemerkung zu den vollkommenen Zahlen, Elem. Math., 31, 115-117 (1976) · Zbl 0336.10004
[166] Hare, K. G., More on the total number of prime factors of an odd perfect number, Math. Comput., 74, 1003-1008 (2005) · Zbl 1137.11302 · doi:10.1090/S0025-5718-04-01683-7
[167] Haworth, G., Mersenne Numbers (1990), Reading, UK: Univ. of Reading, Reading, UK
[168] Brown, D. R., Odd perfect numbers, Math. Proc. Cambridge Philos. Soc., 115, 191-196 (1994) · Zbl 0805.11005 · doi:10.1017/S0305004100072030
[169] Heyworth, M. R., A conjecture on Mersenne’s conjecture, N. Z. Math. Mag., 19, 147-151 (1982) · Zbl 0508.10002
[170] Heyworth, M. R., Continued fractions in a search for odd perfect numbers, N. Z. Math. Mag., 19, 63-69 (1982) · Zbl 0501.10004
[171] Hogendijk, J. P., Thābit ibn Qurra and the pair of amicable numbers 17296; 18416, Hist. Math., 12, 269-273 (1985) · Zbl 0571.01006 · doi:10.1016/0315-0860(85)90025-4
[172] Holdener, J. A., A theorem of Touchard and the form of odd perfect numbers, Am. Math. Mon., 109, 661-663 (2002) · Zbl 1058.11005 · doi:10.1080/00029890.2002.11919899
[173] Hornfeck, B.; Wirsing, E., Über die Häufigkeit vollkommener, Zahlen Math. Ann., 133, 431-438 (1957) · Zbl 0084.04204 · doi:10.1007/BF01343756
[174] Hurwitz, A., New Mersenne primes, Math. Comput., 16, 249-251 (1962) · Zbl 0106.03002 · doi:10.1090/S0025-5718-1962-0146162-X
[175] Iannucci, D. E., The second largest prime divisor of an odd perfect number exceeds ten thousand, Math. Comput., 68, 1749-1760 (1999) · Zbl 0927.11002 · doi:10.1090/S0025-5718-99-01126-6
[176] Iannucci, D. E., The third largest prime divisor of an odd perfect number exceeds one hundred, Math. Comput., 69, 867-879 (2000) · Zbl 0973.11111 · doi:10.1090/S0025-5718-99-01127-8
[177] Iannucci, D. E.; Sorli, R. M., On the total number of prime factors of an odd perfect number, Math. Comput., 72, 2077-2084 (2003) · Zbl 1058.11006 · doi:10.1090/S0025-5718-03-01522-9
[178] V. Imchenetski and V. Bouniakowsky, “Sur un nouveau nombre premier, annoncé par le père Pervouchine,” Extrait d’un rapport à l’Académie Bull. Acad. Impériale Sci. 31, 532-533 (1887). https://archive.org/stream/mobot31753003685184#page/n3 /mode /1up/search/Den. Accessed November 14, 2020. · JFM 19.0169.01
[179] Jenkins, P. M., Odd perfect numbers have a prime factor exceeding 10^7, Math. Comput., 72, 1549-1554 (2003) · Zbl 1126.11304 · doi:10.1090/S0025-5718-03-01496-0
[180] Jerrard, R. P.; Temperley, N., Almost perfect numbers, Math. Mag., 46, 84-87 (1973) · Zbl 0261.10011 · doi:10.1080/0025570X.1973.11976282
[181] P. Jobling, “Large amicable pairs,” June 6, 2004. https://listserv.nodak.edu/scripts/wa.exe?A2= ind0306&L=nmbrthry&P=R97&D=0. Accessed November 14, 2020.
[182] P. A Jobling, “New largest known amicable pair,” March 10, 2005. https://listserv.nodak.edu/cgi-bin/wa.exe?A2= ind0503&L=nmbrthry&F=&S=&PU2. Accessed November 14, 2020.
[183] Kanold, H.-J., Untersuchungen über ungerade vollkommene Zahlen, J. Reine Angew. Math., 183, 98-109 (1941) · Zbl 0024.10103 · doi:10.1515/crll.1941.183.98
[184] Kanold, H.-J., Folgerungen aus dem vorkommen einer Gaußschen Primzahl in der Primfaktorzerlegung einer ungeraden vollkommenen Zahl, J. Reine Angew. Math., 186, 25-29 (1949) · Zbl 0028.38902 · doi:10.1515/crll.1949.186.25
[185] Kanold, H.-J., Über befreundete Zahlen I, Math. Nachr., 9, 243-248 (1953) · Zbl 0050.04103 · doi:10.1002/mana.19530090408
[186] Kanold, H.-J., Über befreundete Zahlen II, Math. Nachr., 10, 99-111 (1953) · Zbl 0051.27902 · doi:10.1002/mana.19530100108
[187] Kanold, H.-J., Über mehrfach vollkommene Zahlen, J. Reine Angew. Math., 197, 82-96 (1957) · Zbl 0077.05203 · doi:10.1515/crll.1957.197.82
[188] Kanold, H.-J., Über ‘quasi-vollkommene Zahlen’, Abh. Braunschweig Wiss. Ges., 40, 17-20 (1988) · Zbl 0656.10004
[189] Kaplansky, I., Lucas’ tests for Mersenne numbers, Am. Math. Mon., 52, 188-190 (1945) · Zbl 0060.08705 · doi:10.1080/00029890.1945.11991536
[190] Karst, E., New factors of Mersenne numbers, Math. Comput., 15, 51 (1961) · Zbl 0097.02801 · doi:10.1090/S0025-5718-1961-0116481-0
[191] Karst, E., Faktorenzerlegung Mersennescher Zahlen mittels programmgesteuerter Rechengeräte, Numer. Math., 3, 79-86 (1961) · Zbl 0106.25905 · doi:10.1007/BF01386004
[192] Karst, E., Search limits on divisors of Mersenne numbers, Nordisk Tidskr. Informationsbehandling, 2, 224-227 (1962) · Zbl 0107.26506
[193] Karst, E., A remarkable quartic yielding certain divisors of Mersenne numbers, Nordisk Tidskr. Informationsbehandling, 3, 122-123 (1963) · Zbl 0126.07102
[194] Kishore, M., On odd perfect, quasiperfect, and odd almost perfect numbers, Math. Comput., 36, 583-586 (1981) · Zbl 0472.10007 · doi:10.2307/2007662
[195] Kishore, M., Odd perfect numbers not divisible by 3, Math. Comput., 40, 405-411 (1983) · Zbl 0505.10003 · doi:10.1090/S0025-5718-1983-0679456-3
[196] Kobayashi, M.; Pollack, P.; Pomerance, C., On the distribution of sociable numbers, J. Number Theory, 129, 1990-2009 (2009) · Zbl 1241.11120 · doi:10.1016/j.jnt.2008.10.011
[197] Acquaah, P.; Konyagin, S., On prime factors of odd perfect numbers, Int. J. Number Theory, 8, 1537-1540 (2012) · Zbl 1272.11007 · doi:10.1142/S1793042112500935
[198] Kozek, M.; Luca, F.; Pollack, P.; Pomerance, C., Harmonious pairs, Int. J. Number Theory, 11, 1633-1651 (2015) · Zbl 1390.11013 · doi:10.1142/S1793042115400151
[199] Kraitchik, M., Factorisation de \({{2}^n} \pm 1\), Sphinx, 8, 148-150 (1938) · JFM 64.0099.03
[200] Kraitchik, M., On the factorization of \({{2}^n} \pm 1\), Scr. Math., 18, 39-52 (1952) · Zbl 0047.03907
[201] Kravitz, S., Divisors of Mersenne numbers \(10,000 < p < 15,000\), Math. Comput., 15, 292-293 (1961) · Zbl 0102.27903
[202] Kühnel, U., Verschärfung der notwendigen Bedingungen für die Existenz von ungeraden vollkommenen Zahlen, Math. Z., 52, 202-211 (1949) · Zbl 0035.31104 · doi:10.1007/BF02230691
[203] Lee, E. J., Amicable numbers and the bilinear Diophantine equation, Math. Comput., 22, 181-187 (1968) · Zbl 0157.08702 · doi:10.1090/S0025-5718-1968-0224543-9
[204] Lee, E. J., On divisibility by nine of the sums of even amicable pairs, Math. Comput., 23, 545-548 (1969) · Zbl 0183.31302 · doi:10.1090/S0025-5718-1969-0248074-6
[205] E. J. Lee and J. S. Madachy, “The history and discovery of amicable numbers 1,” J. Recreational Math. 5 (2), 77-93 (1972); errata: 6 (2), 164 (1973); errata: 6 (3), 229 (1973). · Zbl 0362.10005
[206] Lee, E. J.; Madachy, J. S., The history and discovery of amicable numbers 2, J. Recreational Math., 5, 153-173 (1972) · Zbl 0362.10005
[207] Lee, E. J.; Madachy, J. S., The history and discovery of amicable numbers 3, J. Recreational Math., 5, 231-249 (1972) · Zbl 0362.10005
[208] Lehmer, D. H., Note on the Mersenne number \({{2}^{{139}}} - 1\), Bull. Am. Math. Soc., 32, 522 (1926) · JFM 52.0141.05 · doi:10.1090/S0002-9904-1926-04255-5
[209] Lehmer, D. H., Note on the largest Mersenne number, Bull. Am. Math. Soc., 33, 271 (1927) · JFM 53.0141.03
[210] Lehmer, D. H., An extended theory of Lucas’ functions, Ann. Math., 31, 419-448 (1930) · JFM 56.0874.04 · doi:10.2307/1968235
[211] Lehmer, D. H., Note on Mersenne numbers, Bull. Am. Math. Soc., 38, 383-384 (1932) · JFM 58.0155.03 · doi:10.1090/S0002-9904-1932-05396-4
[212] Lehmer, D. H., Some new factorizations of \({{2}^n} \pm 1\), Bull. Am. Math. Soc., 39, 105-108 (1933) · Zbl 0006.24802 · doi:10.1090/S0002-9904-1933-05571-4
[213] Lehmer, D. H., Hunting big game in the theory of numbers, Scr. Math., 1, 229-235 (1932) · JFM 59.0539.04
[214] Lehmer, D. H., On Lucas’ test for the primality of Mersenne numbers, J. London Math. Soc., 10, 162-165 (1935) · Zbl 0012.10301 · doi:10.1112/jlms/s1-10.2.162
[215] Lehmer, D. H., On the factors of \({{2}^n} \pm 1\), Bull. Am. Math. Soc., 53, 164-167 (1947) · Zbl 0032.26203 · doi:10.1090/S0002-9904-1947-08774-7
[216] Lehmer, D. H., Recent discoveries of large primes, Math. Tables Other Aids Comput., 6, 61 (1952)
[217] Lehmer, D. H., Two new Mersenne primes, Math. Tables Other Aids Comput., 7, 72 (1953)
[218] Lehmer, D. H., Computer technology applied to the theory of numbers, Math. Assoc. Am., 6, 117-151 (1969) · Zbl 0215.06404
[219] Lehmer, D. H., Multiply perfect numbers, Ann. Math., 2, 103-104 (1900) · JFM 32.0190.03 · doi:10.2307/2007188
[220] Luca, F.; Phaovibul, M. T., Amicable pairs with few distinct prime factors, Int. J. Number Theory, 12, 1725-1732 (2016) · Zbl 1406.11009 · doi:10.1142/S1793042116501050
[221] Luca, F.; Pomerance, C., The range of the sum-of-proper-divisors function, Acta Arith., 168, 187-199 (2015) · Zbl 1394.11007 · doi:10.4064/aa168-2-6
[222] Luca, F.; te Riele, H., Nieuw Arch. Wisk., 12, 31-36 (2011) · Zbl 1294.11006
[223] Luca, F.; te Riele, H., Aliquot cycles of repdigits, Integers, 12, 129-140 (2012) · Zbl 1254.11005 · doi:10.1515/integ.2011.090
[224] Lucas, E., “Sur la recherche des grands nombres premiers,” Assoc, Française pour l’Avancement des Sci., 5, 61-68 (1876)
[225] Macdivitt, A. R. G., The most recently discovered prime number, Math. Gaz., 63, 268-270 (1979) · Zbl 0419.10008 · doi:10.2307/3618046
[226] Mason, Th. E., On amicable numbers and their generalizations, Am. Math. Mon., 28, 195-200 (1921) · JFM 48.0156.03 · doi:10.1080/00029890.1921.11986031
[227] McCarthy, P. J., Odd perfect numbers, Scr. Math., 23, 43-47 (1957) · Zbl 0083.26101
[228] McDaniel, W. L., On odd multiply perfect numbers, Boll. Un. Mat. Ital., 2, 185-190 (1970) · Zbl 0213.32601
[229] McDaniel, W. L.; Hagis, P., Some results concerning the non-existence of odd perfect numbers of the form \({{p}^{\alpha }}{{M}^{{2\beta }}}\), Fibonacci Q., 13, 25-28 (1975) · Zbl 0296.10004
[230] M. Mercenne, “Cogitata physico mathematica” (1644). https://gallica.bnf.fr/ark:/12148/ bpt6k81531h.r=mersenne.langFR. Accessed November 14, 2020.
[231] M. Mercenne, “Novarum observationum physico mathématicarum” (1647). https://gallica.bnf.fr/ark:/12148/bpt6k815336.r= mersenne.langFR. Accessed November 14, 2020.
[232] Minoli, D., Issues in nonlinear hyperperfect numbers, Math. Comput., 34, 639-645 (1980) · Zbl 0423.10004 · doi:10.1090/S0025-5718-1980-0559206-9
[233] Moews, D.; Moews, P. C., A search for aliquot cycles below 10^10, Math. Comput., 57, 849-855 (1991) · Zbl 0744.11006
[234] Moews, D.; Moews, P. C., A search for aliquot cycles and amicable pairs, Math. Comput., 61, 935-938 (1993) · Zbl 0781.11002 · doi:10.1090/S0025-5718-1993-1185249-X
[235] D. Moews and P. C. Moews, “A list of amicable pairs below \(2.01 \times{{10}^{{11}}} \),” January 8, 1993. https://xraysgi.ims.uconn.edu:8080/amicable.txt. Accessed November 14, 2020. · Zbl 0781.11002
[236] D. Moews and P. C. Moews, “A list of the first 5001 amicable pairs,” January 7, 1996. https://xraysgi.ims.uconn.edu:8080/amicable2.txt. Accessed November 14, 2020. · Zbl 0781.11002
[237] C. G. Moreira and N. C. Saldanha, “Primos de Mersenne (e outros primos muito grandes),” in 22o Colóquio Brasileiro de Matemática (Matemática Pura e Aplicada, Rio de Janeiro, 1999). · Zbl 1017.11001
[238] L. Murata and C. Pomerance, “On the largest prime factor of a Mersenne number,” in Number Theory, CRM Proc. Lecture Notes (2004), Vol. 36, pp. 209-218. doi:10.1090/crmp/036/16 · Zbl 1077.11003
[239] Narkiewicz, W., Classical Problems in Number Theory (1986), Warszawa: Polish Scientific, Warszawa · Zbl 0616.10001
[240] Nguyen, H. M.; Pomerance, C., The reciprocal sum of the amicable numbers, Math. Comput., 88, 1503-1526 (2019) · Zbl 1429.11009 · doi:10.1090/mcom/3362
[241] Nielsen, P. P., An upper bound for odd perfect numbers, Integers A, 3, 1-9 (2003) · Zbl 1085.11003
[242] Nielsen, P. P., Odd perfect numbers have at least nine distinct prime factors, Math. Comput., 76, 2109-2126 (2007) · Zbl 1142.11086 · doi:10.1090/S0025-5718-07-01990-4
[243] Nielsen, P. P., Odd perfect numbers, Diophantine equations, and upper bounds, Math. Comput., 84, 2549-2567 (2015) · Zbl 1325.11009 · doi:10.1090/S0025-5718-2015-02941-X
[244] Noll, L. C.; Nickel, L., The 25th and 26th Mersenne primes, Math. Comput., 35, 1387-1390 (1980) · Zbl 0443.10005 · doi:10.1090/S0025-5718-1980-0583517-4
[245] Ochem, P.; Rao, M., Odd perfect numbers are greater than 10^1500, Math. Comput., 81, 1869-1877 (2012) · Zbl 1263.11005 · doi:10.2307/23268069
[246] Ochem, P.; Rao, M., On the number of prime factors of an odd perfect number, Math. Comput., 83, 2435-2439 (2014) · Zbl 1370.11009 · doi:10.1090/S0025-5718-2013-02776-7
[247] Ondrejka, R., More on large primes, J. Recreational Math., 11, 112-113 (1978) · Zbl 0395.10010
[248] Ondrejka, R., More very large twin primes, J. Recreational Math., 15, 7 (1982)
[249] Paganini, B. N. I., Atti della R, Accad. Sc. Torino, 2, 362 (1866)
[250] Parks, J., Amicable pairs and aliquot cycles on average, Int. J. Number Theory, 11, 1751-1790 (2015) · Zbl 1326.11028 · doi:10.1142/S1793042115500761
[251] J. M. Pedersen, “Known amicable pairs.” http://amicable.homepage.dk/knwnc2.htm. Accessed November 14, 2020.
[252] J. M. Pedersen, “Various amicable pair lists and statistics.” http://www.vejlehs.dk/staff/jmp/aliquot/apstat.htm. Accessed November 14, 2020.
[253] Perrott, J., Sur une proposition empirique énoncée au Bulletin, Bull. Soc. Math. France, 17, 155-156 (1889) · JFM 21.0172.04 · doi:10.24033/bsmf.394
[254] Pollack, P., A remark on sociable numbers of odd order, J. Number Theory, 130, 1732-1736 (2010) · Zbl 1195.11013 · doi:10.1016/j.jnt.2010.03.011
[255] Pollack, P., On Dickson’s theorem concerning odd perfect numbers, Am. Math. Mon., 118, 161-164 (2011) · Zbl 1225.11009 · doi:10.4169/Am.math.monthly.118.02.161
[256] Pollack, P., Powerful amicable numbers, Colloq. Math., 122, 103-123 (2011) · Zbl 1246.11014 · doi:10.4064/cm122-1-10
[257] Pollack, P., Quasi-amicable numbers are rare, J. Integer Seq., 14, 13 (2011) · Zbl 1232.11007
[258] Pollack, P., The greatest common divisor of a number and its sum of divisors, Michigan Math. J., 60, 199-214 (2011) · Zbl 1286.11152 · doi:10.1307/mmj/1301586311
[259] Pollack, P., “Finiteness theorems for perfect numbers and their kin,” Am. Math. Mon. 119, 670-681 (2012), Errata: Am. Math. Mon., 120, 482-483 (2013) · Zbl 1275.11011
[260] Pollack, P., On relatively prime amicable pairs, Mosc. J. Comb. Number Theory, 5, 36-51 (2015) · Zbl 1360.11015
[261] Pollack, P.; Pomerance, C., Prime-perfect numbers, Integers, 12, 1417-1437 (2012) · Zbl 1271.11006 · doi:10.1515/integers-2012-0044
[262] Pollack, P.; Pomerance, C., “Paul Erdős and the rise of statistical thinking in elementary number theory,” Erdős Centennial (2013), Budapest: János Bolyai Math. Soc., Budapest · Zbl 1300.11021 · doi:10.1007/978-3-642-39286-3_19
[263] Pollack, P.; Pomerance, C., Some problems of Erdős on the sum-of-divisors function, Trans. Am. Math. Soc. Ser. B, 3, 1-26 (2016) · Zbl 1365.11111 · doi:10.1090/btran/10
[264] Pollack, P.; Pomerance, C.; Thompson, L., Divisor-sum fibers, Mathematika, 64, 330-342 (2018) · Zbl 1410.11115 · doi:10.1112/S0025579317000535
[265] Pollack, P.; Shevelev, V., On perfect and near-perfect numbers, J. Number Theory, 132, 3037-3046 (2012) · Zbl 1272.11013 · doi:10.1016/j.jnt.2012.06.008
[266] Pomerance, C., Odd perfect numbers are divisible by at least seven distinct primes, Acta Arith., 25, 265-300 (1974) · Zbl 0247.10007 · doi:10.4064/aa-25-3-265-300
[267] Pomerance, C., Multiply perfect numbers, Mersenne primes, and effective computability, Math. Ann., 226, 195-206 (1977) · Zbl 0324.10001 · doi:10.1007/BF01362422
[268] Pomerance, C., On the distribution of amicable numbers, J. Reine Angew. Math., 293-294, 217-222 (1977) · Zbl 0349.10004
[269] Pomerance, C., On the distribution of amicable numbers II, J. Reine Angew. Math., 325, 182-188 (1981) · Zbl 0448.10007
[270] Pomerance, C., On primitive divisors of Mersenne numbers, Acta Arith., 46, 355-367 (1986) · Zbl 0606.10034 · doi:10.4064/aa-46-4-355-367
[271] Pomerance, C., Analytic Number Theory (2015), Cham: Springer, Cham · Zbl 1336.11002 · doi:10.1007/978-3-319-22240-0_19
[272] Pomerance, C., Connections in Discrete Mathematics (2018), Cambridge: Cambridge Univ. Press, Cambridge
[273] Pomerance, C., The aliquot constant, after Bosma and Kane, Q. J. Math., 69, 915-930 (2018) · Zbl 1445.11102 · doi:10.1093/qmath/hay005
[274] Pomey, L., Sur les nombres de Fermat et de Mersenne, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 16, 135-138 (1924) · JFM 50.0086.01
[275] Poulet, P., Sur les nombres multiparfaits (1925), Grenoble: Association Française, Grenoble · JFM 52.0149.06
[276] P. Poulet, La chasse aux nombres. I: Parfaits, amiables et extensions (Stevens, Bruxelles, 1929). · JFM 55.0696.05
[277] Poulet, P., Forty-three new couples of amicable numbers, Scr. Math., 14, 77 (1948) · Zbl 0032.39701
[278] Powers, R. E., The tenth perfect number, Am. Math. Mon., 18, 195-197 (1911) · JFM 42.0206.03 · doi:10.2307/2972574
[279] Powers, R. E., The tenth perfect number, Bull. Am. Math. Soc., 18, 1 (1912) · JFM 43.0277.07
[280] Powers, R. E., On Mersenne’s numbers, Proc. London Math. Soc., 13, 39 (1914)
[281] Powers, R. E., A Mersenne prime, Bull. Am. Math. Soc., 20, 531 (1914) · JFM 45.0302.03 · doi:10.1090/S0002-9904-1914-02547-9
[282] Powers, R. E., Certain composite Mersenne’s numbers, Proc. London Math. Soc., 15, 22 (1917) · JFM 46.0228.03
[283] Powers, R. E., Note on a Mersenne number, Bull. Am. Math. Soc., 40, 883 (1934) · Zbl 0010.38901 · doi:10.1090/S0002-9904-1934-05994-9
[284] C. Reid, From Zero to Infinity: What Makes Numbers, 4th ed. (MAA Spectrum, Mathematical Association of America, Washington, DC, 1992). · Zbl 0803.00002
[285] Reidlinger, H., “Über ungerade mehrfach vollkommene Zahlen,” Österreichische Akad, Wiss. Math. Nat., 192, 237-266 (1983) · Zbl 0553.10007
[286] Ribenboim, P., The Book of Prime Number Records (1989), New York: Springer-Verlag, New York · Zbl 0642.10001 · doi:10.1007/978-1-4684-0507-1
[287] Ribenboim, P., The New Book of Prime Number Records (1996), New York: Springer-Verlag, New York · Zbl 0856.11001 · doi:10.1007/978-1-4612-0759-7
[288] Ribenboim, P., My Numbers, My Friends: Popular Lectures on Number Theory (2000), New York: Springer-Verlag, New York · Zbl 0947.11001 · doi:10.1007/b98892
[289] Ribenboim, P., The Little Book of Bigger Primes (2004), New York: Springer, New York · Zbl 1087.11001
[290] Ribenboim, P., Die Welt der Primzahlen: Geheimnisse und Rekorde (2011), Heidelberg: Springer, Heidelberg · Zbl 1216.11001 · doi:10.1007/978-3-642-18079-8
[291] Rieger, G. J., Bemerkung zu einem Ergebnis von Erdős über befreundete Zahlen, J. Reine Angew. Math., 261, 157-163 (1973) · Zbl 0262.10026
[292] te Riele, H. J. J., Four large amicable pairs, Math. Comput., 28, 309-312 (1974) · Zbl 0274.10008 · doi:10.1090/S0025-5718-1974-0330033-8
[293] te Riele, H. J. J., Hyperperfect numbers with three different prime factors, Math. Comput., 36, 297-298 (1981) · Zbl 0452.10005 · doi:10.1090/S0025-5718-1981-0595066-9
[294] te Riele, H. J. J., Perfect numbers and aliquot sequences: Computational methods in number theory, Part I, Math. Centre Tracts, 154, 141-157 (1982) · Zbl 0515.10010
[295] te Riele, H. J. J., Number Theory Noordwijkerhout (1984), Berlin: Springer-Verlag, Berlin · doi:10.1007/BFb0099454
[296] te Riele, H. J. J., On generating new amicable pairs from given amicable pairs, Math. Comput., 42, 219-223 (1984) · Zbl 0531.10006 · doi:10.1090/S0025-5718-1984-0725997-0
[297] te Riele, H. J. J., Rules for constructing hyperperfect numbers, Fibonacci Q., 22, 50-60 (1984) · Zbl 0531.10005
[298] H. J. J. te Riele, “Computation of all the amicable pairs below 10^10,” Math. Comput. 47 (S9-S40), 361-368 (1986). · Zbl 0598.10012
[299] H. J. J. te Riele, “A new method for finding amicable pairs,” in Mathematics of Computation 1943-1993: A Half-Century of Computational Mathematics, 50th Anniversary Symposium, Vancouver, BC,1993 (Am. Math. Soc., Providence, RI, 1994), pp. 577-581. · Zbl 0817.11002
[300] te Riele, H. J. J., Grootschalig rekenen in de getaltheorie, Nieuw Arch. Wisk., 14, 236-243 (2013) · Zbl 1331.11071
[301] H. J. J. te Riele, W. Borho, S. Battiato, H. Hoffmann, and E. J. Lee, “Table of amicable pairs between 10^10 and 10^52,” Technical Report NM-N8603 (Centrum voor Wiskunde en Informatica, Amsterdam, 1986).
[302] Riesel, H., Några stora primtal, Elementa, 39, 258-260 (1956)
[303] Riesel, H., A new Mersenne prime, Math. Tables Aids Comput., 12, 60 (1958) · Zbl 0082.25602 · doi:10.1090/S0025-5718-58-99282-2
[304] Riesel, H., Mersenne numbers, Math. Tables Aids Comput., 12, 207-213 (1958) · Zbl 0082.25603 · doi:10.2307/2002023
[305] Riesel, H., All factors \(q{{ < 10}^8}\), Math. Comput., 16, 478-482 (1962) · Zbl 0105.03203
[306] Roberts, T., On the form of an odd perfect number, Aust. Math., 35, 244 (2008) · Zbl 0801.65124 · doi:10.1017/S0334270000009152
[307] Robinson, R. M., Mersenne and Fermat numbers, Proc. Am. Math. Soc., 5, 842-846 (1954) · Zbl 0058.27504 · doi:10.2307/2031878
[308] Robinson, R. M., Some factorizations of numbers of the form \({{2}^n} \pm 1\), Math. Tables Aids Comput., 11, 265-268 (1957) · Zbl 0086.03302 · doi:10.2307/2001948
[309] Rosen, M. I., A proof of the Lucas-Lehmer test, Am. Math. Mon., 95, 855-856 (1988) · Zbl 0669.10015 · doi:10.1080/00029890.1988.11972101
[310] Rouse Ball, W. W., Mersenne’s numbers, Messenger Math., 21, 34-40 (1891) · JFM 23.0175.03
[311] Sándor, J.; Crstici, B., Handbook of Number Theory (2004), Dordrecht: Kluwer Academic, Dordrecht · Zbl 1079.11001 · doi:10.1007/1-4020-2547-5
[312] Sándor, J.; Mitrinović, D. S.; Crstici, B., Handbook of Number Theory (2006), Dordrecht: Springer, Dordrecht · Zbl 1151.11300
[313] du Sautoy, M., The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics (2003), New York: Harper Collins, New York · Zbl 1049.11002
[314] Scheffler, D.; Ondrejka, R., The numerical evaluation of the eighteenth perfect number, Math. Comput., 14, 199-200 (1960) · Zbl 0097.02702 · doi:10.1090/S0025-5718-1960-0112239-6
[315] Schinzel, A.; Sierpiński, W., “Sur certaines hypothèses concernant les nombres premiers,” Acta Arith. 4, 185-208 (1958), Erratum: Acta Arith., 5, 259 (1958) · Zbl 0082.25802
[316] Selfridge, J. L.; Hurwitz, A., Fermat numbers and Mersenne numbers, Math. Comput., 18, 146-148 (1964) · Zbl 0121.28306 · doi:10.1090/S0025-5718-1964-0159775-8
[317] Shanks, D.; Kravitz, S., On the distribution of Mersenne divisors, Math. Comput., 21, 97-101 (1967) · Zbl 0146.05703 · doi:10.2307/2003474
[318] Sierpiński, W., Les nombres de Mersenne et de Fermat, Matematiche (Catania), 10, 80-91 (1955) · Zbl 0067.27404
[319] Sierpiński, W., O liczbach złoḍżonych postaci \({{(2}^p} + 1){\text{/}}3\), gdzie \(p\) jest liczbą pierwszą, Prace Mat., 7, 169-172 (1962)
[320] Sierpiński, W., Elementary Theory of Numbers (1988), Warszawa: PWN-Polish Scientific, Warszawa · Zbl 0638.10001
[321] Sitaramaiah, V.; Subbarao, M. V., On unitary multiperfect numbers, Nieuw Arch. Wisk., 16, 57-61 (1998) · Zbl 0962.11007
[322] Skula, L., Prime power divisors of Mersenne numbers and Wieferich primes of higher order, Integers, 19, A19 (2019) · Zbl 1454.11016
[323] Slowinski, D., Searching for the 27th Mersenne prime, J. Recreational Math., 11, 258-267 (1978) · Zbl 0411.10002
[324] Steuerwald, R., Verschärfung einen notwendigen Bedeutung für die Existenz einen ungeraden vollkommenen Zahl, Bayer. Akad. Wiss. Math. Nat., 2, 69-72 (1937) · Zbl 0018.20301
[325] Steuerwald, R., Ein Satz über natürliche Zahlen mit \(\sigma (N) = 3N\), Arch. Math., 5, 449-451 (1954) · Zbl 0056.03805 · doi:10.1007/BF01898389
[326] Stewart, I., Professor Stewart’s Incredible Numbers (2015), New York: Basic Books, New York · Zbl 1358.00004
[327] Stewart, I., Do Dice Play God? The Mathematics of Uncertainty (2019), New York: Basic Books, New York · Zbl 1425.00013
[328] Subbarao, M. V., Odd perfect numbers: Some new issues, Period. Math. Hung., 38, 103-109 (1999) · Zbl 0980.11002 · doi:10.1023/A:1004711502449
[329] M. V. Subbarao, T. J. Cook, R. S. Newberry, and J. M. Weber, “On unitary perfect numbers,” Delta (Waukesha) 3 (1), 22-26 (1972-1973). · Zbl 0251.10007
[330] Subbarao, M. V.; Warren, L. J., Unitary perfect numbers, Can. Math. Bull., 9, 147-153 (1966) · Zbl 0139.26901 · doi:10.4153/CMB-1966-018-4
[331] Suryanarayana, D., Super perfect numbers, Elem. Math., 24, 16-17 (1969) · Zbl 0165.36001
[332] Suryanarayana, D., Quasiperfect numbers, Bull. Calcutta Math. Soc., 69, 421-426 (1977) · Zbl 0414.10002
[333] Suzuki, Y., On amicable tuples, Ill. J. Math., 62, 225-252 (2018) · Zbl 1453.11007 · doi:10.1215/ijm/1552442661
[334] Sylvester, J. J., Sur l’impossibilité de l’existence d’un nombre parfait impair qui ne contient pas au moins \(5\), C. R. Acad. Sci. Paris, 106, 522-526 (1888) · JFM 20.0173.04
[335] Touchard, J., On prime numbers and perfect numbers, Scr. Math., 19, 35-39 (1953) · Zbl 0050.26802
[336] Troupe, L., On the number of prime factors of values of the sum-of-proper-divisors function, J. Number Theory C, 150, 120-135 (2015) · Zbl 1311.11094 · doi:10.1016/j.jnt.2014.11.014
[337] Tuckerman, B., The 24th Mersenne prime, Proc. Nat. Acad. Sci. U.S.A., 68, 2319-2320 (1971) · Zbl 0224.10006 · doi:10.1073/pnas.68.10.2319
[338] Tuckerman, B., “A search procedure and lower bound for odd perfect numbers,” Math. Comput. 27, 943-949 (1973), Corrigenda: Math. Comput., 28, 887 (1974) · Zbl 0273.10004
[339] Tuckerman, B., Corrigendum: “Three new Mersenne primes and a statistical theory, Math. Comput., 31, 1051 (1977) · doi:10.1090/S0025-5718-1977-0441839-1
[340] Uhler, H. S., First proof that the Mersenne number \({{M}_{{157}}}\), Proc. Nat. Acad. Sci. U.S.A., 30, 314-316 (1944) · Zbl 0060.08702 · doi:10.1073/pnas.30.10.314
[341] Uhler, H. S., Note on the Mersenne numbers \({{M}_{{157}}}\), Bull. Am. Math. Soc., 52, 178 (1946) · Zbl 0060.08703 · doi:10.1090/S0002-9904-1946-08537-7
[342] Uhler, H. S., A new result concerning a Mersenne number, Math. Tables Other Aids Comput., 2, 94 (1946) · Zbl 0060.08704
[343] Uhler, H. S., On Mersenne’s number \({{M}_{{199}}}\), Bull. Am. Math. Soc., 53, 163-164 (1947) · Zbl 0032.26301 · doi:10.1090/S0002-9904-1947-08773-5
[344] Uhler, H. S., On Mersenne’s number \({{M}_{{227}}}\), Bull. Am. Math. Soc., 54, 379 (1948) · Zbl 0032.26302
[345] Uhler, H. S., On all of Mersenne’s numbers particularly \({{M}_{{193}}}\), Proc. Nat. Acad. Sci. U.S.A., 34, 102-103 (1948) · Zbl 0030.01502 · doi:10.1073/pnas.34.3.102
[346] Uhler, H. S., A brief history of the investigations on Mersenne’s numbers and the latest immense primes, Scr. Math., 18, 122-131 (1952) · Zbl 0048.03003
[347] Uhler, H. S., On the 16th and 17th perfect numbers, Scr. Math., 19, 128-131 (1953) · Zbl 0051.27805
[348] Uhler, H. S., Full values of the first seventeen perfect numbers, Scr. Math., 20, 240 (1954) · Zbl 0056.03804
[349] Viêt, C. H., What’s special about the perfect number 6?, Am. Math. Mon., 128, 87 (2020) · Zbl 1456.00003 · doi:10.1080/00029890.2021.1839304
[350] Wagstaff, S. S., Divisors of Mersenne numbers, Math. Comput., 40, 385-397 (1983) · Zbl 0507.10005 · doi:10.1090/S0025-5718-1983-0679454-X
[351] S. S. Wagstaff, Jr., “The Cunningham project,” in High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams (Am. Math. Soc., Providence, RI, 2004), pp. 367-378.
[352] Wagstaff, S. S., The Joy of Factoring (2013), Providence, RI: Am. Math. Soc., Providence, RI · Zbl 1286.11001 · doi:10.1090/stml/068
[353] A. Walker, “New large amicable pairs” (2004). https://listserv.nodak.edu/scripts/wa.exe?A2=ind0405&L=nmbrthry&F=&S=&P_43. Accessed November 14, 2020.
[354] Wall, C. R., Bi-unitary perfect numbers, Proc. Am. Math. Soc., 33, 39-42 (1972) · Zbl 0214.06404 · doi:10.1090/S0002-9939-1972-0289403-9
[355] Warren, L. J.; Bray, H. G., On the square-freeness of Fermat and Mersenne numbers, Pac. J. Math., 22, 563-564 (1967) · Zbl 0149.28204 · doi:10.2140/pjm.1967.22.563
[356] Watkins, J., Number Theory: A Historical Approach (2014), Princeton, NJ: Princeton Univ. Press, Princeton, NJ · Zbl 1361.11001
[357] Webber, G. C., Non-existence of odd perfect numbers of the form \({{3}^{{2\beta }}}{{p}^{\alpha }}s_1^{{2{{\beta }_1}}}s_2^{{2{{\beta }_2}}}s_3^{{2{{\beta }_3}}}\), Duke Math. J., 18, 741-749 (1951) · Zbl 0043.04703 · doi:10.1215/S0012-7094-51-01867-4
[358] Western, A. E., “On Lucas’ and Pepin’s tests for the primality of Mersenne’s numbers,” J. London Math. Soc. 7, 130-137 (1932), Corrigenda: J. London Math. Soc., 7, 272 (1932) · JFM 58.1029.04
[359] Williams, H. C., Edouard Lucas and Primality Testing (1998), New York: Wiley, New York · Zbl 1155.11363
[360] Williams, H. C.; Shallit, J. O., Factoring integers before computers, Math. Comput., 48, 481-531 (1994) · Zbl 0847.11002
[361] Wirsing, E., Bemerkung zu der Arbeit über vollkommene Zahlen, Math. Ann., 137, 316-318 (1959) · Zbl 0084.04205 · doi:10.1007/BF01360967
[362] Woodall, H. J., Note on a Mersenne number, Bull. Am. Math. Soc., 17, 540 (1911) · JFM 42.0206.02 · doi:10.1090/S0002-9904-1911-02108-5
[363] Woodall, H. J., Mersenne’s numbers, Manchester Mem. Proc., 56, 1-5 (1912) · JFM 43.0240.03
[364] G. Woltman, “GIMPS: Mathematics and research strategy.” http://mersenne.org/math.htm. Accessed November 14, 2020.
[365] Woltman, G., On the discovery of the 38th known Mersenne prime, Fibonacci Q., 37, 367-370 (1999) · Zbl 1072.11512
[366] Woltman, G.; Kurowski, S., On the discovery of the 45th and 46th known Mersenne primes, Fibonacci Q., 46-47, 194-197 (2008) · Zbl 1216.11003
[367] Yamada, T., On the divisibility of odd perfect numbers, quasiperfect numbers and amicable numbers by a high power of a prime, Integers, 20, A91 (2020) · Zbl 1471.11014
[368] Yamagami, A., On the numbers of prime factors of square free amicable pairs, Acta Arith., 177, 153-167 (2017) · Zbl 1420.11014 · doi:10.4064/aa8327-7-2016
[369] Yates, S., Titanic primes, J. Recreational Math., 16, 250-262 (1983) · Zbl 0598.10004
[370] Yates, S., Sinkers of the titanics, J. Recreational Math., 17, 268-274 (1984) · Zbl 0602.10005
[371] S. Yates, “Tracking titanics, in The Lighter Side of Mathematics: Proceedings of Strens Mem. Conf., Calgary 1986 (Math. Assoc. of America, Washington DC, 1993), pp. 349-356.
[372] Pingzhi, Y., An upper bound for the number of odd multiperfect numbers, Bull. Aust. Math. Soc., 89, 1-4 (2014) · Zbl 1307.11009 · doi:10.1017/S000497271200113X
[373] Pingzhi, Y.; Zhongfeng, Z., Addition to ‘An upper bound for the number of odd multiperfect numbers’, Bull. Aust. Math. Soc., 89, 5-7 (2014) · Zbl 1307.11010 · doi:10.1017/S0004972713000452
[374] Zelinsky, J., Upper bounds on the second largest prime factor of an odd perfect number, Int. J. Number Theory, 15, 1183-1189 (2019) · Zbl 1435.11012 · doi:10.1142/S1793042119500659
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.