×

Improving stability of moving particle semi-implicit method by source terms based on time-scale correction of particle-level impulses. (English) Zbl 1521.76635

Summary: The aim of this paper is to investigate the unstable nature of pressure computation focusing on incompressible flow modeling through the projection-based particle methods. A new approach from the original viewpoint of the momentum conservation regarding particle-level collisions, hereinafter refered to as time-scale correction of particle-level impulses (TCPI), is proposed to derive new source terms of pressure Poisson equation (PPE). This results in more stable computations with drastic reduction of unphysical pressure oscillations and more robust simulation with pressure magnitudes almost independent to time step. Moreover, compared to other strategies, no additional computational effort is required, its implementation is extremely simple, and the only numerical parameter is the propagation speed of the perturbations, of which the calibration is much more straightforward due to its physical meaning. Simulations were carried out using moving particle semi-implicit (MPS) method improved by the proposed approach. The comparisons of computed results with theoretical and experimental ones confirmed the effectiveness of the proposed approach.

MSC:

76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids

References:

[1] Basic, J.; Degiuli, N.; Ban, D., A class of renormalised meshless Laplacians for boundary value problems, J Comput Phys, 354, 269-287 (2018), Available at · Zbl 1380.65348
[2] Belytschko, T.; Mullen, R., Two-dimensional fluid-structure impact computations with regularization, Comput Methods Appl Mech Eng, 27, 2, 139-154 (1981), Available at · Zbl 0472.73046
[3] Bhatia, H.; Norgard, G.; Pascucci, V.; Bremer, P. T., The Helmholtz-Hodge decomposition-a survey, IEEE Trans Vis Comput Graph, 19, 8 (2013), Available at:
[4] Cao, X. Y.; Ming, F. R.; Zhang, A. M.; Tao, L., Multi-phase SPH modelling of air effect on the dynamic flooding of a damaged cabin, Comput Fluids, 163, 15, 7-19 (2018), Available at: · Zbl 1390.65128
[5] Cheng, L.-. Y.; Arai, M., A Numerical treatment of the boundary conditions for stable assessment of hydrodynamic impact pressure, (21st International Conference on Offshore Mechanics and Arctic Engineering (2002)), Available at:
[6] Chen, X.; Sun, Z. G.; Liu, L.; Xi, G., Improved MPS method with variable-size particles, Int J Numer Methods Fluids, 80, 6, 358-374 (2016), Available at:
[7] Chen, X.; Xi, G.; Sun, Z.-. G., Improving stability of MPS method by a computational scheme based on conceptual particles, Comput Methods Appl Mech Eng, 254-271 (2014), Available at: · Zbl 1423.76361
[8] Chorin, A. J., The numerical solution of the Navier-Stokes equations for an incompressible fluid, Bulletin of the American Mathematical Society, 73, 6, 928-931 (1967), Available at: · Zbl 0168.46501
[9] Courant, R.; Friedrichs, K.; Levy, H., On the Partial Difference Equations of Mathematical Physics, IBM Journal of Research and Development, 11, 2, 215-234 (1967), Available at: · Zbl 0145.40402
[10] Cummins, S. J.; Rudman, M., An SPH projection method, J Comput Phys, 152, 2, 584-607 (1999), Available at · Zbl 0954.76074
[11] Duan, G.; Chen, B.; Zhang, X.; Wang, Y., A multiphase MPS solver for modeling multi-fluid interaction with free surface and its application in oil spill, Comput Methods Appl Mech Eng, 320, 133-161 (2017), Available at: · Zbl 1439.76004
[12] Duan, G., An accurate and stable multiphase moving particle semi-implicit method based on a corrective matrix for all particle interaction models, Int J Numer Methods Eng, 115, 10, 1287-1314 (2018), Available at: · Zbl 07865129
[13] Duan, G.; Yamaji, A.; Koshizuka, S.; Chen, B., The truncation and stabilization error in multiphase moving particle semi-implicit method based on corrective matrix: which is dominant?, Comput Fluids, 190, 254-273 (2019), Available at: · Zbl 1496.76100
[14] Garoosi, F.; Shakibaeinia, A., An improved high-order ISPH method for simulation of free-surface flows and convection heat transfer, Powder Technol, 376, 668-696 (2020), Available at
[15] Garoosi, F.; Shakibaeinia, A., Numerical simulation of Rayleigh-Bénard convection and three-phase Rayleigh-Taylor instability using a modified MPS method, Eng Anal Bound Elem, 123, 1-35 (2021), Available at: · Zbl 1464.76136
[16] Gingold, R. A.; Monagham, J. J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon Not R Astron Soc, 181, 375-389 (1977), Available at: · Zbl 0421.76032
[17] Gotoh, H.; Khayyer, A., Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering, Journal of Ocean Engineering and Marine Energy, 2, 3, 251-278 (2016), Available at:
[18] Gotoh, H.; Khayyer, A., On the state-of-the-art of particle methods for coastal and ocean engineering, Coastal Engineering Journal, 60, 1, 79-103 (2018), Available at:
[19] Gotoh, H.; Khayyer, A.; Hori, C., New assessment criterion of free surface for stabilizing pressure field in particle method, Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), 65, 1, 21-25 (2009), Available at:
[20] Gotoh, H., On enhancement of Incompressible SPH method for simulation of violent sloshing flows, Applied Ocean Research, 46, 104-115 (2014), Available at
[21] Gotoh, H.; Okayasu, A.; Watanabe, Y., Computational wave dynamics (2013), World Scientific Publishing Company, Available at: · Zbl 1296.76001
[22] Harlow, F. H.; Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, The Physics of Fluids, 8, 12, 2182-2189 (1965), Available at: · Zbl 1180.76043
[23] Henshaw, W. D.; Kreiss, H.-. O., Analysis of a difference approximation for the incompressible navier-stokes equations (1995), Los Alamos National Laboratory, Research Report LA-UR-95-3536
[24] Henshaw, W. D.; Petersson, N. A., A split-step scheme for the incompressible Navier-Stokes equations.” Numerical simulations of incompressible flows, Numerical simulations of incompressible flows, 108-125 (2003), Available at: · Zbl 1074.76036
[25] Hirokazu, I., Numerical analysis of fragmentation processes in vapor explosion using particle method (1999)
[26] Hu, X. Y.; Adams, N. A., An incompressible multi-phase SPH method, J Comput Phys, 227, 1, 264-278 (2007), Available at · Zbl 1126.76045
[27] Hwang, Y.-. H., A moving particle method with embedded pressure mesh (MPPM) for incompressible flow calculations, Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, 60, 5, 370-398 (2011), Available at:
[28] Islam, M. R.I.; Chakraborty, S.; Shaw, A., On consistency and energy conservation in smoothed particle hydrodynamics, Int J Numer Methods Eng, 116, 9, 601-632 (2018), Available at: · Zbl 07865044
[29] Itori, S.; Iribe, T.; Nakaza, E., Development and application on new judging method of free water surface of MPS, Journal of Japan Society of Civil Engineers, Ser. B3 (Ocean Engineering), 67, 2, 274-279 (2011), Available at:
[30] Jandaghian, M.; Krimi, A.; Zarrati, A. R.; Shakibaeinia, A., Enhanced weakly-compressible MPS method for violent free-surface flows: role of particle regularization techniques, J Comput Phys, 434 (2021), Available at: · Zbl 07508520
[31] Khayyer, A.; Gotoh, H., Development of CMPS method for accurate water-surface tracking in breaking waves, Coastal Engineering Journal, 50, 2, 179-207 (2008), Available at:
[32] Khayyer, A.; Gotoh, H., Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure, Coastal Engineering, 56, 4, 419-440 (2009), Available at
[33] Khayyer, A.; Gotoh, H., A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method, Applied Ocean Research, 32, 1, 124-131 (2010), Available at
[34] Khayyer, A.; Gotoh, H., Enhancement of stability and accuracy of the moving particle semi-implicit method, J Comput Phys, 230, 8, 3093-3118 (2011), Available at · Zbl 1316.76084
[35] Khayyer, A.; Gotoh, H., A 3D higher order laplacian model for enhancement and stabilization of pressure calculation in 3D MPS-based simulations, Applied Ocean Research, 37, 120-126 (2012), Available at
[36] Khayyer, A.; Gotoh, H., Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios, J Comput Phys, 242, 211-233 (2013), Available at: · Zbl 1314.76036
[37] Khayyer, A.; Gotoh, H.; Shao, S., Enhanced predictions of wave impact pressure by improved incompressible SPH methods, Applied Ocean Research, 31, 2, 111-131 (2009), Available at
[38] Khayyer, A.; Gotoh, H.; Shimizu, Y., Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting schem in ISPH context, J Comput Phys, 332, 236-256 (2017), Available at: · Zbl 1378.76094
[39] Khayyer, A.; Gotoh, H.; Shimizu, Y., A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fields, Comput Fluids, 179, 356-371 (2019), Available at: · Zbl 1411.76138
[40] Khayyer, A.; Gotoh, H.; Shimizu, Y.; Gotoh, K., On enhancement of energy conservation properties of projection-based particle methods, European Journal of Mechanics - B/Fluids, 66, 20-37 (2017), Available at: · Zbl 1408.76414
[41] Khayyer, A.; Tsuruta, N.; Shimizu, Y.; Gotoh, H., Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering, Applied Ocean Research, 82, 397-414 (2019), Available at:
[42] Koh, C. G.; Gao, M.; Luo, C., A new particle method for simulation of incompressible free surface flow problems, Int J Numer Methods Eng, 1582-1604 (2012), Available at: · Zbl 1242.76272
[43] Kondo, M.; Koshizuka, S., Improvement of stability in moving particle semi-implicit method, Int J Numer Methods Fluids, 65, 6, 638-654 (2011), Available at: · Zbl 1428.76155
[44] Koshizuka, S.; Nobe, A.; Oka, Y., Numerical analysis of breaking waves using the moving particle semi-implicit method, Int J Numer Methods Fluids, 26, 7, 751-769 (1998), Available at: https://doi.org/10.1002/(SICI)1097-0363(19980415)26:7 · Zbl 0928.76086
[45] Koshizuka, S.; Oka, Y., Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nuclear Science and Engineering, 123, 3, 421-434 (1996), Available at:
[46] Lee, E.-. S., Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method, J Comput Phys, 227, 18, 8417-8436 (2008), Available at · Zbl 1256.76054
[47] Lee, B.-. H.; Park, J.-. C.; Kim, M.-. H.; Hwang, S.-. C., Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads, Comput Methods Appl Mech Eng, 200, 9-12, 1113-1125 (2011), Available at: · Zbl 1225.76234
[48] Li, L., A split-step finite-element method for incompressible Navier-Stokes equations with high-order accuracy up-to the boundary, J Comput Phys, 408 (2020), Available at: · Zbl 07505610
[49] Li, G., A review on MPS method developments and applications in nuclear engineering, Comput Methods Appl Mech Eng, 367 (2020), Available at: · Zbl 1442.76084
[50] Lind, S. J.; Xu, R.; Stansby, P. K.; Rogers, B. D., Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves, J Comput Phys, 231, 4, 1499-1523 (2012), Available at: · Zbl 1286.76118
[51] Liu, X.; Morita, K.; Zhang, S., An advanced moving particle semi-implicit method for accurate and stable simulation of incompressible flows, Comput Methods Appl Mech Eng, 339, 467-487 (2018), Available at: · Zbl 1440.76114
[52] Liu, X.; Morita, K.; Zhang, S., A stable moving particle semi-implicit method with renormalized Laplacian model improved for incompressible free-surface flows, Comput Methods Appl Mech Eng, 356, 199-219 (2019), Available at: · Zbl 1441.76092
[53] Lobovský, L., Experimental investigation of dynamic pressure loads during dam break, J Fluids Struct, 48, 407-434 (2014), Available at
[54] Lo, E. Y.M.; Shao, S., Simulation of near-shore solitary wave mechanics by an incompressible SPH method, Applied Ocean Research, 24, 5, 275-286 (2002), Available at:
[55] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astronomical Journal, 82, 1013-1024 (1977), Available at
[56] Macià, F.; Merino-Alonso, P. E.; Souto-Iglesias, A., On the truncated integral SPH solution of the hydrostatic problem, Computational Particle Mechanics (2020), Available at:
[57] Marrone, S.; Colagrossi, A.; Di Mascio, A.; Le Touzé, D., Prediction of energy losses in water impacts using incompressible and weakly compressible models, J Fluids Struct, 54, 802-822 (2015), Available at:
[58] Matsunaga, T.; Södersten, A.; Shibata, K.; Koshizuka, S., Improved treatment of wall boundary conditions for a particle method with consistent spatial discretization, Comput Methods Appl Mech Eng, 358 (2020), Available at: · Zbl 1441.76093
[59] Ma, Q. W.; Zhou, Y.; Yan, S., A review on approaches to solving Poisson’s equation in projection-based meshless methods for modelling strongly nonlinear water waves, Journal of Ocean Engineering and Marine Energy, 2, 3, 279-299 (2016), Available at:
[60] Meringolo, D. D.; Colagrossi, A.; Marrone, S.; Aristodemo, F., On the filtering of acoustic components in weakly-compressible SPH simulations, J Fluids Struct, 70, 1-23 (2017), Available at:
[61] Merino-Alonso, P. E.; Macià, F.; Souto-Iglesias, A., On the numerical solution to the truncated discrete SPH formulation of the hydrostatic problem, Journal of Hydrodynamics, 32, 699-709 (2020), Available at:
[62] Milne-Thomson, L. M., Theoretical hydrodynamics (1968), Macmillan Press: Macmillan Press New York · Zbl 0164.55802
[63] Mokrani, C.; Abadie, S., Conditions for peak pressure stability in VOF simulations of dam break flow impact, J Fluids Struct, 62, 86-103 (2016), Available at
[64] Monagham, J. J., Smoothed particle hydrodynamics, Reports on Progress in Physics, 68, 8, 1703-1759 (2005), Available at: http://dx.doi.org/10.1088/0034-4885/68/8/R01
[65] Monaghan, J. J., Smoothed particle hydrodynamics, Annu Rev Astron Astrophys, 30, 543-574 (1992), Available at
[66] Ng, K. C.; Hwang, Y. H.; Sheu, T. W.H., On the accuracy assessment of Laplacian models in MPS, Comput Phys Commun, 185, 10, 2412-2426 (2014), Available at · Zbl 1360.35049
[67] Ngo-Cong, D.; Tran, C.-. D.; Mai-Duy, N.; Tran-Cong, T., Incompressible smoothed particle hydrodynamics-moving IRBFN method for viscous flow problems, Eng Anal Bound Elem, 59, 172-186 (2015), Available at: · Zbl 1403.76168
[68] Ng, K. C.; Sheu, T. W.H.; Hwang, Y. H., Unstructured moving particle pressure mesh (UMPPM) method for incompressible isothermal and non-isothermal flow computation, Comput Methods Appl Mech Eng, 305, 703-738 (2016), Available at: · Zbl 1423.76324
[69] Pohle, F. V., The lagrangian equations of hydrodynamics: solutions which are analytic functions of the time (1951), New York University: New York University New York
[70] Randles, P. W.; Libersky, L. D., Smoothed particle hydrodynamics: some recent improvements and applications, Comput Methods Appl Mech Eng, 139, 1-4, 375-408 (1996), Available at · Zbl 0896.73075
[71] Sandim, M.; Paiva, A.; Figueiredo, L. H., Simple and reliable boundary detection for meshfree particle methods using interval analysis, J Comput Phys (2020), Available at: · Zbl 07506621
[72] Shakibaeinia, A.; Jin, Y.-. C., A weakly compressible MPS method for modeling of open-boundary free-surface flow, Int J Numer Methods Fluids, 63, 10, 1208-1232 (2010), Available at: · Zbl 1425.76202
[73] Shibata, K.; Koshizuka, S.; Matsunaga, T.; Massaie, I., The overlapping particle technique for multi-resolution simulation of particle methods, Comput Methods Appl Mech Eng, 325, 434-462 (2017), Available at: · Zbl 1439.76132
[74] Sigalotti, L. D.G., A new insight into the consistency of the SPH interpolation formula, Appl Math Comput, 356, 50-73 (2019), Available at · Zbl 1428.76152
[75] Souto-Iglesias, A.; Macià, F.; González, L. M.; Cercos-Pita, J. C., On the consistency of MPS, Comput Phys Commun, 184, 3, 732-745 (2013), Available at · Zbl 1307.76031
[76] Sun, Z.; Djidjeli, K.; Xing, J. T.; Cheng, F., Modified MPS method for the 2D fluid structure interaction problem with free surface, Comput Fluids, 122, 47-65 (2015), Available at: · Zbl 1390.76769
[77] Sun, C.; Shen, Z.; Zhang, M., Surface treatment technique of MPS method for free surface flows, Engineering Analysis with Boundary Elements,, 102, 60-72 (2019), Available at: · Zbl 1464.76159
[78] Suzuki, Y., Studies on improvement in particle method and multiphysics simulator using particle method (2008), The University of Tokyo: The University of Tokyo Tokyo, Japan, [doctoral thesis in Japanese]
[79] Tamai, T.; Koshizuka, S., Least squares moving particle semi-implicit method, Computational Particle Mechanics, 1, 3, 277-305 (2014), Available at
[80] Tamai, T.; Murotani, K.; Koshizuka, S., On the consistency and convergence of particle-based meshfree discretization schemes for the Laplace operator, Comput Fluids, 142, 79-85 (2017), Available at: · Zbl 1390.65161
[81] Tanaka, M.; Cardoso, R.; Bahai, H., Multi-resolution MPS method, J Comput Phys, 359, 106-136 (2018), Available at · Zbl 1383.76388
[82] Tanaka, M.; Masunaga, T., Stabilization and smoothing of pressure in MPS method by Quasi-Compressibility, J Comput Phys, 229, 11, 4279-4290 (2010), Available at · Zbl 1334.76121
[83] Tang, Z.; Wan, D.; Chen, G.; Xiao, Q., Numerical simulation of 3D violent free-surface flows by multi-resolution MPS method, Journal of Ocean Engineering and Marine Energy, 2, 355-364 (2016), Available at:
[84] Taylor, G., Oblique impact of a jet on a plane surface. Philosophical Transactions for the Royal Society of London, Series A, Mathematical and Physical Sciences, 260, 1110, 96-100 (1966), Available at:
[85] Temam, R., Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II), Arch Ration Mech Anal, 33, 5, 377-385 (1969), Available at: · Zbl 0207.16904
[86] Tsukamoto, M. M., A numerical study of the effects of bottom and sidewall stiffeners on sloshing behavior considering roll resonant motion, Marine Structures, 72 (2020), Available at:
[87] Tsukamoto, M. M.; Cheng, L.-. Y.; Motezuki, F. K., Fluid interface detection technique based on neighborhood particles centroid deviation (NPCD) for particle methods, Int J Numer Methods Fluids, 82, 3, 148-168 (2016), Available at:
[88] Tsuruta, N.; Khayyer, A.; Gotoh, H., A short note on dynamic stabilization of moving particle semi-implicit method, Comput Fluids, 82, 158-164 (2013), Available at · Zbl 1290.76127
[89] Tsuruta, N.; Khayyer, A.; Gotoh, H., Space potential particles to enhance the stability of projection-based particle methods, Int J Comut Fluid Dyn, 29, 1, 100-119 (2015), Available at: · Zbl 07514817
[90] Violeau, D.; Leroy, A., Optimal time step for incompressible SPH, J Comput Phys, 288, 119-130 (2015), Available at · Zbl 1352.65410
[91] Wang, L.; Jiang, Q.; Zhang, C., Improvement of moving particle semi-implicit method for simulation of progressive water waves, Int J Numer Methods Fluids, 85, 2, 69-89 (2017), Available at:
[92] Wang, L., Enhancement of pressure calculation in projection-based particle methods by incorporation of background mesh scheme, Applied Ocean Research, 86, 320-339 (2019), Available at
[93] Wang, J.; Zhang, X., Modified particle pethod with integral Navier-Stokes formulation for incompressible flows, J Comput Phys, 366, 1, 1-13 (2018), Available at · Zbl 1406.76074
[94] Wendland, H., Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv Comput Math, 4, 1, 389-396 (1995), Available at: · Zbl 0838.41014
[95] Wu, G. X.; Taylor, R. E., Finite element analysis of two-dimensional non-linear transient water waves, Applied Ocean Research, 16, 6, 363-372 (1994), Available at
[96] Xu, R.; Stansby, P. K.; Laurence, D., Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach, J Comput Phys, 228, 18, 6703-6725 (2009), Available at: · Zbl 1261.76047
[97] Ye, T.; Pan, D.; Huang, C.; Liu, M., Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications, Physics of Fluids, 31, 1 (2019), Available at:
[98] Zhang, S.; Morita, K.; Fukuda, K.; Shirakawa, N., An improved MPS method for numerical simulations of convective heat transfer problems, Int J Numer Methods Fluids, 51, 1, 31-47 (2006), Available at: · Zbl 1146.80008
[99] Zheng, X.; Ma, Q.-. W.; Duan, W.-. Y., Incompressible SPH method based on Rankine source solution for violent water wave simulation, J Comput Phys, 276, 291-314 (2014), Available at: · Zbl 1349.76756
[100] Mazhar, Farrukh; Javed, Ali; Tang Xing, Jing; Shahzad, Aamer; Mansoor, Mohtashim; Maqsood, Adnan, On the meshfree particle methods for fluid-structure interaction problems, Engineering Analysis with Boundary Elements, 124, 14-40 (2021) · Zbl 1464.76150
[101] Amaro Junior, Rubens Augusto; Cheng, Liang-Yee; Buruchenko, Sergey K., A Comparison Between Weakly-Compressible Smoothed Particle Hydrodynamics (WCSPH) and Moving Particle Semi-implicit (MPS) Methods for 3D Dam-Break Flows, International Journal of Computational Methods, 18, 2 (2021) · Zbl 07341995
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.