×

Modified particle method with integral Navier-Stokes formulation for incompressible flows. (English) Zbl 1406.76074

Summary: In this work, a modified particle method in fluid mechanics involving irregular distribution and discontinuity issues is proposed. Due to the approximation accuracy, momentum conservation and governing equation feasibility, traditional particle method, moving particle semi-implicit (MPS) method in this paper, cannot guarantee the accuracy and stability of computation, and the divergence calculation in Navier-Stokes equation may cause numerical error in computation domain with discontinuity. To enhance the computation accuracy of particle method, we modify the gradient operator with a corrected tensor emanating from minimizing the local error of the first-order Taylor expansion approximation. Besides, inspired by peridynamic which is mostly used in solid mechanics, a new governing equation in an integral form which maintains the momentum conservation is obtained. Combining the modified gradient and new governing equation, we obtain a new particle-based method. The numerical results verify its feasibility and illustrate a good computational performance of proposed method in the fluid dynamics involving non-uniform particle distribution.

MSC:

76M28 Particle methods and lattice-gas methods
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Full Text: DOI

References:

[1] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 3, 375-389 (1977) · Zbl 0421.76032
[2] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron. J., 82, 1013-1024 (1977)
[3] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int. J. Numer. Methods Fluids, 20, 8-9, 1081-1106 (1995) · Zbl 0881.76072
[4] Koshizuka, S.; Oka, Y., Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Eng., 123, 3, 421-434 (1996)
[5] Zhang, S.; Morita, K.; Fukuda, K.; Shirakawa, N., An improved MPS method for numerical simulations of convective heat transfer problems, Int. J. Numer. Methods Fluids, 51, 1, 31-47 (2006) · Zbl 1146.80008
[6] Khayyer, A.; Gotoh, H., Modified moving particle semi-implicit methods for the prediction of 2d wave impact pressure, Coast. Eng., 56, 4, 419-440 (2009)
[7] Grenier, N.; Le Touzé, D.; Colagrossi, A.; Antuono, M.; Colicchio, G., Viscous bubbly flows simulation with an interface SPH model, Ocean Eng., 69, 88-102 (2013)
[8] Natsui, S.; Takai, H.; Kumagai, T.; Kikuchi, T.; Suzuki, R. O., Stable mesh-free moving particle semi-implicit method for direct analysis of gas-liquid two-phase flow, Chem. Eng. Sci., 111, 286-298 (2014)
[9] Xue, T.; Tamma, K. K.; Zhang, X., A consistent moving particle system simulation method: applications to parabolic/hyperbolic heat conduction type problems, Int. J. Heat Mass Transf., 101, 365-372 (2016)
[10] Bihs, H.; Kamath, A., A combined level set/ghost cell immersed boundary representation for floating body simulations, Int. J. Numer. Methods Fluids, 83, 12, 905-916 (2017)
[11] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J. Elast., 88, 2, 151-184 (2007) · Zbl 1120.74003
[12] Parks, M. L.; Lehoucq, R. B.; Plimpton, S. J.; Silling, S. A., Implementing peridynamics within a molecular dynamics code, Comput. Phys. Commun., 179, 11, 777-783 (2007) · Zbl 1197.82014
[13] Silling, S. A.; Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comput. Struct., 83, 17-18, 1526-1535 (2005)
[14] Fan, H.; Li, S., A peridynamics-SPH modeling and simulation of blast fragmentation of soil under buried explosive loads, Comput. Methods Appl. Mech. Eng., 318, 349-381 (2017) · Zbl 1439.74187
[15] Turner, D. Z., A non-local model for fluid-structure interaction with applications in hydraulic fracturing, Int. J. Comput. Methods Eng. Sci. Mech., 14, 5, 391-400 (2012) · Zbl 07871355
[16] Katiyar, A.; Foster, J. T.; Ouchi, H.; Sharma, M. M., A peridynamic formulation of pressure driven convective fluid transport in porous media, J. Comput. Phys., 261, 3, 209-229 (2014) · Zbl 1349.76819
[17] Tu, Q.; Li, S., A new peridynamic formulation for bubbly flows studies in three dimension, (World Congress on Computational Mechanics (2016))
[18] Silling, S. A.; Parks, M. L.; Kamm, J. R.; Weckner, O.; Rassaian, M., Modeling shockwaves and impact phenomena with Eulerian peridynamics, Int. J. Impact Eng., 107, 47-57 (2017)
[19] Tu, Q.; Li, S., An updated Lagrangian particle hydrodynamics (ULPH) for Newtonian fluids, J. Comput. Phys., 348, 493-513 (2017) · Zbl 1380.76127
[20] Børve, S.; Omang, M.; Trulsen, J., Regularized smoothed particle hydrodynamics with improved multi-resolution handling, J. Comput. Phys., 208, 1, 345-367 (2005) · Zbl 1114.76343
[21] Quinlan, N. J.; Basa, M.; Lastiwka, M., Truncation error in mesh-free particle methods, Int. J. Numer. Methods Eng., 66, 13, 2064-2085 (2006) · Zbl 1110.76325
[22] Børve, S.; Omang, M.; Trulsen, J., Regularized smoothed particle hydrodynamics: a new approach to simulating magnetohydrodynamic shocks, Astrophys. J., 561, 1, 82-93 (2001)
[23] Colagrossi, A.; Bouscasse, B.; Antuono, M.; Marrone, S., Particle packing algorithm for SPH schemes, Comput. Phys. Commun., 183, 8, 1641-1653 (2012) · Zbl 1307.65140
[24] Lastiwka, M.; Quinlan, N.; Basa, M., Adaptive particle distribution for smoothed particle hydrodynamics, Int. J. Numer. Methods Fluids, 47, 10-11, 1403-1409 (2005) · Zbl 1064.76087
[25] Xu, R.; Stansby, P.; Laurence, D., Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach, J. Comput. Phys., 228, 18, 6703-6725 (2009) · Zbl 1261.76047
[26] Tsuruta, N.; Khayyer, A.; Gotoh, H., Space potential particles to enhance the stability of projection-based particle methods, Int. J. Comput. Fluid Dyn., 29, 1, 100-119 (2015) · Zbl 07514817
[27] Tsuruta, N.; Khayyer, A.; Gotoh, H., A short note on dynamic stabilization of moving particle semi-implicit method, Comput. Fluids, 82, 158-164 (2013) · Zbl 1290.76127
[28] Koshizuka, S.; Nobe, A.; Oka, Y., Numerical analysis of breaking waves using the moving particle semi-implicit method, Int. J. Numer. Methods Fluids, 26, 7, 751-769 (1998) · Zbl 0928.76086
[29] Tayebi, A.; Jin, Y.-c., Development of moving particle explicit (MPE) method for incompressible flows, Comput. Fluids, 117, 1-10 (2015) · Zbl 1390.76772
[30] Khayyer, A.; Gotoh, H., Enhancement of stability and accuracy of the moving particle semi-implicit method, J. Comput. Phys., 230, 8, 3093-3118 (2011) · Zbl 1316.76084
[31] Oger, G.; Doring, M.; Alessandrini, B.; Ferrant, P., An improved SPH method: towards higher order convergence, J. Comput. Phys., 225, 2, 1472-1492 (2007) · Zbl 1118.76050
[32] Schwaiger, H. F., An implicit corrected SPH formulation for thermal diffusion with linear free surface boundary conditions, Int. J. Numer. Methods Eng., 75, 6, 647-671 (2008) · Zbl 1195.80037
[33] Lind, S. J.; Stansby, P. K.; Rogers, B. D., Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH), J. Comput. Phys., 309, 129-147 (2016) · Zbl 1351.76241
[34] Tanaka, M.; Masunaga, T., Stabilization and smoothing of pressure in MPS method by quasi-compressibility, J. Comput. Phys., 229, 11, 4279-4290 (2010) · Zbl 1334.76121
[35] Shakibaeinia, A.; Jin, Y. C., A weakly compressible MPS method for modeling of open-boundary free-surface flow, Int. J. Numer. Methods Fluids, 63, 10, 1208-1232 (2010) · Zbl 1425.76202
[36] Colagrossi, A.; Landrini, M., Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comput. Phys., 191, 2, 448-475 (2003) · Zbl 1028.76039
[37] Morris, J. P.; Fox, P. J.; Zhu, Y., Modeling low Reynolds number incompressible flows using SPH, J. Comput. Phys., 136, 1, 214-226 (1997) · Zbl 0889.76066
[38] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 1, 175-209 (2000) · Zbl 0970.74030
[39] Ganzenmüller, G. C.; Hiermaier, S.; May, M., On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics, Comput. Struct., 150, 71-78 (2015)
[40] Silling, S. A., Stability of peridynamic correspondence material models and their particle discretizations, Comput. Methods Appl. Mech. Eng., 322, 42-57 (2017) · Zbl 1439.74017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.