×

Series solutions of the non-stationary Heun equation. (English) Zbl 1387.33030

Summary: We consider the non-stationary Heun equation, also known as quantum Painlevé VI, which has appeared in different works on quantum integrable models and conformal field theory. We use a generalized kernel function identity to transform the problem to solve this equation into a differential-difference equation which, as we show, can be solved by efficient recursive algorithms. We thus obtain series representations of solutions which provide elliptic generalizations of the Jacobi polynomials. These series reproduce, in a limiting case, a perturbative solution of the Heun equation due to Takemura, but our method is different in that we expand in non-conventional basis functions that allow us to obtain explicit formulas to all orders; in particular, for special parameter values, our series reduce to a single term.

MSC:

33E20 Other functions defined by series and integrals
16R60 Functional identities (associative rings and algebras)
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

Software:

DLMF

References:

[1] Bazhanov, Vladimir V. and Mangazeev, Vladimir V., Eight-vertex model and non-stationary {L}am\'e equation, Journal of Physics. A. Mathematical and General, 38, 8, L145-L153, (2005) · Zbl 1062.81093 · doi:10.1088/0305-4470/38/8/L01
[2] Chalykh, O. and Feigin, M. and Veselov, A., New integrable generalizations of {C}alogero–{M}oser quantum problem, Journal of Mathematical Physics, 39, 2, 695-703, (1998) · Zbl 0906.34061 · doi:10.1063/1.532347
[3] mics {Dig10, {NIST} digital library of mathematical functions} · Zbl 1019.65001
[4] Erd\'elyi, A., Integral equations for {H}eun functions, The Quarterly Journal of Mathematics. Oxford. Second Series, 13, 107-112, (1942) · Zbl 0060.19503 · doi:10.1093/qmath/os-13.1.107
[5] Etingof, Pavel I. and Frenkel, Igor B. and Kirillov, Jr., Alexander A., Spherical functions on affine {L}ie groups, Duke Mathematical Journal, 80, 1, 59-90, (1995) · Zbl 0848.43010 · doi:10.1215/S0012-7094-95-08003-X
[6] Etingof, Pavel I. and Kirillov, Jr., Alexander A., Representations of affine {L}ie algebras, parabolic differential equations, and {L}am\'e functions, Duke Mathematical Journal, 74, 3, 585-614, (1994) · Zbl 0811.17026 · doi:10.1215/S0012-7094-94-07421-8
[7] Falceto, Fernando and Gaw\c{e}dzki, Krzysztof, Unitarity of the {K}nizhnik–{Z}amolodchikov–{B}ernard connection and the {B}ethe ansatz for the elliptic {H}itchin systems, Communications in Mathematical Physics, 183, 2, 267-290, (1997) · Zbl 0872.58076 · doi:10.1007/BF02506407
[8] Fateev, Vladimir A. and Litvinov, Alexey V. and Neveu, Andr\'e and Onofri, Enrico, A differential equation for a four-point correlation function in {L}iouville field theory and elliptic four-point conformal blocks, Journal of Physics. A. Mathematical and Theoretical, 42, 30, 304011, 29 pages, (2009) · Zbl 1176.81113 · doi:10.1088/1751-8113/42/30/304011
[9] Felder, Giovanni and Varchenko, Alexander, Integral representation of solutions of the elliptic {K}nizhnik–{Z}amolodchikov–{B}ernard equations, International Mathematics Research Notices, 1995, 5, 221-233, (1995) · Zbl 0840.17020 · doi:10.1155/S1073792895000171
[10] Felder, Giovanni and Varchenko, Alexander, Special functions, conformal blocks, {B}ethe ansatz and {\({\rm SL}(3,{\mathbb Z})\)}, The Royal Society of London. Philosophical Transactions. Series A. Mathematical, Physical and Engineering Sciences, 359, 1784, 1365-1373, (2001) · Zbl 0996.33014 · doi:10.1098/rsta.2001.0839
[11] Halln\"as, Martin and Langmann, Edwin, A unified construction of generalized classical polynomials associated with operators of {C}alogero–{S}utherland type, Constructive Approximation. An International Journal for Approximations and Expansions, 31, 3, 309-342, (2010) · Zbl 1193.33028 · doi:10.1007/s00365-009-9060-4
[12] Halln\"as, Martin and Ruijsenaars, Simon, A recursive construction of joint eigenfunctions for the hyperbolic nonrelativistic {C}alogero–{M}oser {H}amiltonians, International Mathematics Research Notices. IMRN, 2015, 20, 10278-10313, (2015) · Zbl 1328.35242 · doi:10.1093/imrn/rnu267
[13] Inozemtsev, V. I., Lax representation with spectral parameter on a torus for integrable particle systems, Letters in Mathematical Physics, 17, 1, 11-17, (1989) · Zbl 0679.70005 · doi:10.1007/BF00420008
[14] Kazakov, A. Ya. and Slavyanov, S. Yu., Integral relations for {H}eun-class special functions, Theoretical and Mathematical Physics, 107, 3, 733-739, (1996) · Zbl 0924.34021 · doi:10.1007/BF02070381
[15] Kolb, Stefan, Radial part calculations for {\( \widehat{\mathfrak{sl}}_2\)} and the {H}eun-{KZB} heat equation, International Mathematics Research Notices. IMRN, 2015, 23, 12941-12990, (2015) · Zbl 1356.17024 · doi:10.1093/imrn/rnv064
[16] Komori, Yasushi and Noumi, Masatoshi and Shiraishi, Jun’ichi, Kernel functions for difference operators of {R}uijsenaars type and their applications, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 5, 054, 40 pages, (2009) · Zbl 1160.81393 · doi:10.3842/SIGMA.2009.054
[17] Komori, Yasushi and Takemura, Kouichi, The perturbation of the quantum {C}alogero–{M}oser–{S}utherland system and related results, Communications in Mathematical Physics, 227, 1, 93-118, (2002) · Zbl 1001.81015 · doi:10.1007/s002200200622
[18] Koroteev, Peter and Sciarappa, Antonio, On elliptic algebras and large-{\(n\)} supersymmetric gauge theories, Journal of Mathematical Physics, 57, 11, 112302, 32 pages, (2016) · Zbl 1355.81112 · doi:10.1063/1.4966641
[19] Lambe, C. G. and Ward, D. R., Some differential equations and associated integral equations, The Quarterly Journal of Mathematics, os-5, 1, 81-97, (1934) · Zbl 0009.16401 · doi:10.1093/qmath/os-5.1.81
[20] Langmann, Edwin, Anyons and the elliptic {C}alogero–{S}utherland model, Letters in Mathematical Physics, 54, 4, 279-289, (2000) · Zbl 0974.81069 · doi:10.1023/A:1010961107811
[21] Langmann, Edwin, Algorithms to solve the (quantum) {S}utherland model, Journal of Mathematical Physics, 42, 9, 4148-4157, (2001) · Zbl 1012.81022 · doi:10.1063/1.1389472
[22] Langmann, Edwin, Remarkable identities related to the (quantum) elliptic {C}alogero–{S}utherland model, Journal of Mathematical Physics, 47, 2, 022101, 18 pages, (2006) · Zbl 1111.81161 · doi:10.1063/1.2167807
[23] Langmann, Edwin, Singular eigenfunctions of {C}alogero–{S}utherland type systems and how to transform them into regular ones, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 3, 031, 18 pages, (2007) · Zbl 1133.81030 · doi:10.3842/SIGMA.2007.031
[24] Langmann, Edwin, Source identity and kernel functions for elliptic {C}alogero-{S}utherland type systems, Letters in Mathematical Physics, 94, 1, 63-75, (2010) · Zbl 1198.81093 · doi:10.1007/s11005-010-0416-2
[25] Langmann, Edwin, Explicit solution of the (quantum) elliptic {C}alogero–{S}utherland model, Annales Henri Poincar\'e. A Journal of Theoretical and Mathematical Physics, 15, 4, 755-791, (2014) · Zbl 1290.81226 · doi:10.1007/s00023-013-0254-8
[26] Langmann, Edwin and Takemura, Kouichi, Source identity and kernel functions for {I}nozemtsev-type systems, Journal of Mathematical Physics, 53, 8, 082105, 19, 3012626, (2012) · Zbl 1278.81170 · doi:10.1063/1.4745001
[27] Maier, Robert S., The 192 solutions of the {H}eun equation, Mathematics of Computation, 76, 258, 811-843, (2007) · Zbl 1118.34084 · doi:10.1090/S0025-5718-06-01939-9
[28] Nagoya, H., Hypergeometric solutions to {S}chr\"odinger equations for the quantum {P}ainlev\'e equations, Journal of Mathematical Physics, 52, 8, 083509, 16 pages, (2011) · Zbl 1272.81065 · doi:10.1063/1.3620412
[29] Nawata, Satoshi, Givental {\(J\)}-functions, quantum integrable systems, {AGT} relation with surface operator, Advances in Theoretical and Mathematical Physics, 19, 6, 1277-1338, (2015) · Zbl 1342.81313 · doi:10.4310/ATMP.2015.v19.n6.a4
[30] Nekrasov, Nikita A. and Shatashvili, Samson L., Quantization of integrable systems and four dimensional gauge theories, X{VI}th {I}nternational {C}ongress on {M}athematical {P}hysics, 265-289, (2010), World Sci. Publ., Hackensack, NJ · Zbl 1214.83049 · doi:10.1142/9789814304634_0015
[31] Novikov, D. P., Integral transformation of solutions for a {F}uchsian-class equation corresponding to the {O}kamoto transformation of the Painlev\'e {V}{I} equation, Theoretical and Mathematical Physics, 146, 3, 295-303, (2006) · Zbl 1177.34114 · doi:10.1007/s11232-006-0040-6
[32] Heun’s differential equations, Oxford Science Publications, (1995), Oxford University Press, Oxford · Zbl 0847.34006
[33] Rosengren, Hjalmar, Special polynomials related to the supersymmetric eight-vertex model. III. {P}ainlev\'e {VI} equation · Zbl 1330.82014
[34] Rosengren, Hjalmar, Special polynomials related to the supersymmetric eight-vertex model: a summary, Communications in Mathematical Physics, 340, 3, 1143-1170, (2015) · Zbl 1330.82014 · doi:10.1007/s00220-015-2439-0
[35] Ruijsenaars, Simon N. M., Hilbert–{S}chmidt operators vs. integrable systems of elliptic {C}alogero–{M}oser type. {III}. {T}he {H}eun case, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 5, 049, 21 pages, (2009) · Zbl 1163.33324 · doi:10.3842/SIGMA.2009.049
[36] Sergeev, A. N., {C}alogero operator and {L}ie superalgebras, Theoretical and Mathematical Physics, 131, 3, 747-764, (2002) · Zbl 1039.81028 · doi:10.1023/A:1015968505753
[37] Slavyanov, Sergei Yu. and Lay, Wolfgang, Special functions. A unified theory based on singularities, Oxford Mathematical Monographs, xvi+293, (2000), Oxford University Press, Oxford · Zbl 1064.33006
[38] Smirnov, Alexander O., Elliptic solitons and {H}eun’s equation, The {K}owalevski Property ({L}eeds, 2000), CRM Proc. Lecture Notes, 32, 287-305, (2002), Amer. Math. Soc., Providence, RI · Zbl 1072.34102
[39] Takemura, Kouichi, The {H}eun equation and the {C}alogero–{M}oser–{S}utherland system. {II}. {P}erturbation and algebraic solution, Electronic Journal of Differential Equations, 2004, 15, 30 pages, (2004) · Zbl 1087.81029
[40] Takemura, Kouichi, The {H}eun equation and the {C}alogero–{M}oser–{S}utherland system. {IV}. {T}he {H}ermite–{K}richever ansatz, Communications in Mathematical Physics, 258, 2, 367-403, (2005) · Zbl 1088.81056 · doi:10.1007/s00220-005-1359-9
[41] Whittaker, E. T. and Watson, G. N., A course of modern analysis, Cambridge Mathematical Library, vi+608, (1996), Cambridge University Press, Cambridge · Zbl 0951.30002 · doi:10.1017/CBO9780511608759
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.