×

Special polynomials related to the supersymmetric eight-vertex model: a summary. (English) Zbl 1330.82014

The author introduces and studies symmetric polynomials, which as very special cases include polynomials related to the supersymmetric eight-vertex model, and other elliptic models with \(\Delta=\pm 1/2\). It is shown that up to a change of variables, these polynomials satisfy a Schrödinger equation with elliptic potential and that specializations of the polynomials are tau functions for Painlevé VI.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
35Q40 PDEs in connection with quantum mechanics
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
05E05 Symmetric functions and generalizations

References:

[1] Baxter R.J.: One-dimensional anisotropic Heisenberg chain. Ann. Phys. 70, 23-337 (1972)
[2] Baxter R.J.: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain II. Equivalence to a generalized ice-type model. Ann. Phys. 76, 25-47 (1973) · Zbl 1092.82513 · doi:10.1016/0003-4916(73)90440-5
[3] Bazhanov V.V., Mangazeev V.V.: Eight-vertex model and non-stationary Lamé equation. J. Phys. A 38, L145-L153 (2005) · Zbl 1062.81093 · doi:10.1088/0305-4470/38/8/L01
[4] Bazhanov V.V., Mangazeev V.V.: The eight-vertex model and Painlevé VI. J. Phys. A 39, 12235-12243 (2006) · Zbl 1114.34071 · doi:10.1088/0305-4470/39/39/S15
[5] Beccaria M., Hagendorf C.: A staggered fermion chain with supersymmetry on open intervals. J. Phys. A 45, 365201 (2012) · Zbl 1268.82019 · doi:10.1088/1751-8113/45/36/365201
[6] Bernard D.: On the Wess-Zumino-Witten models on Riemann surfaces. Nucl. Phys. B 309, 145-174 (1988) · doi:10.1016/0550-3213(88)90236-2
[7] Clarkson P.A.: Special polynomials associated with rational solutions of the Painlevé equations and applications to soliton equations. Comput. Methods Funct. Theory 6, 329-401 (2006) · Zbl 1112.33015 · doi:10.1007/BF03321618
[8] Conte R., Dornic I.: The master Painlevé VI heat equation. C R Math. 352(10), 803-806 (2014) · Zbl 1309.34146 · doi:10.1016/j.crma.2014.08.006
[9] Darboux G.: Sur une équation linéaire. C R Acad. Sci. Paris 94, 1645-1648 (1882) · JFM 14.0278.01
[10] Etingof P.I., Kirillov A.A.: Representations of affine Lie algebras, parabolic differential equations, and Lamé functions. Duke Math. J. 74, 585-614 (1994) · Zbl 0811.17026 · doi:10.1215/S0012-7094-94-07421-8
[11] Eynard B., Ribault S.: Lax matrix solution of c = 1 conformal field theory. J. High Energy Phys. 2014, 59 (2014) · doi:10.1007/JHEP02(2014)059
[12] Fateev V.A., Litvinov A.V., Neveu A., Onofri E.: A differential equation for a four-point correlation function in Liouville field theory and elliptic four-point conformal blocks. J. Phys. A 42, 304011 (2009) · Zbl 1176.81113 · doi:10.1088/1751-8113/42/30/304011
[13] Fendley P., Hagendorf C.: Ground-state properties of a supersymmetric fermion chain. J. Stat. Mech. 2011, P02014 (2011) · doi:10.1088/1742-5468/2011/02/P02014
[14] Fendley P., Saleur H.: N = 2 supersymmetry, Painlevé III and exact scaling functions in 2D polymers. Nucl. Phys. B 388, 609-626 (1992) · doi:10.1016/0550-3213(92)90556-Q
[15] Filali G.: Elliptic dynamical reflection algebra and partition function of SOS model with reflecting end. J. Geom. Phys. 61, 1789-1796 (2011) · Zbl 1226.82010 · doi:10.1016/j.geomphys.2011.01.002
[16] Gamayun O., Iorgov N., Lisovyy O.: Conformal field theory of Painlevé VI. J. High Energy Phys. 2012, 038 (2012) · Zbl 1397.81307 · doi:10.1007/JHEP10(2012)038
[17] Hagendorf C.: Spin chains with dynamical lattice supersymmetry. J. Stat. Phys. 150, 609-657 (2013) · Zbl 1459.82045 · doi:10.1007/s10955-013-0709-9
[18] Hagendorf C., Fendley P.: The eight-vertex model and lattice supersymmetry. J. Stat. Phys. 146, 1122-1155 (2012) · Zbl 1241.82019 · doi:10.1007/s10955-012-0430-0
[19] Izergin A.G., Coker D.A., Korepin V.E.: Determinant formula for the six-vertex model. J. Phys. A 25, 4315-4334 (1992) · Zbl 0764.60114 · doi:10.1088/0305-4470/25/16/010
[20] Jimbo M., Miwa T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2, 407-448 (1981) · Zbl 1194.34166 · doi:10.1016/0167-2789(81)90021-X
[21] Kac V.: Infinite-Dimensional Lie Algebras. 3rd edn. Cambridge University Press, Cambridge (1990) · Zbl 0716.17022 · doi:10.1017/CBO9780511626234
[22] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y.: Determinant formulas for the Toda and discrete Toda equations. Funkcial. Ekvac. 44, 291-307 (2001) · Zbl 1145.37327
[23] Kolb, S.: Radial part calculation for \[{\widehat{\mathfrak{sl}}_2}\] sl^2 and the Heun KZB-heat equation. Int. Math. Res. Notices (to appear) · Zbl 1356.17024
[24] Kuperberg G.: Another proof of the alternating-sign matrix conjecture. Int. Math. Res. Notices 1996, 139-150 (1996) · Zbl 0859.05027 · doi:10.1155/S1073792896000128
[25] Langmann E., Takemura K.: Source identity and kernel functions for Inozemtsev-type systems. J. Math. Phys. 53, 082105 (2012) · Zbl 1278.81170 · doi:10.1063/1.4745001
[26] Mangazeev V.V., Bazhanov V.V.: Eight-vertex model and Painlevé VI equation. II. Eigenvector results. J. Phys. A 43, 085206 (2010) · Zbl 1187.82026 · doi:10.1088/1751-8113/43/8/085206
[27] Masuda T.: On a class of algebraic solutions to the Painlevé VI equation, its determinant formula and coalescence cascade. Funkcial. Ekvac. 46, 121-171 (2003) · Zbl 1151.34340 · doi:10.1619/fesi.46.121
[28] Mazzocco M.: Picard and Chazy solutions to the Painlevé VI equation. Math. Ann. 321, 157-195 (2001) · Zbl 0999.34079 · doi:10.1007/PL00004500
[29] Nagoya, H.: A Quantization of the Sixth Painlevé Equation, in Noncommutativity and Singularities, pp. 291-298, Math. Soc. Tokyo (2009) · Zbl 1185.34138
[30] Nagoya H.: Hypergeometric solutions to Schrödinger equations for the quantum Painlevé equations. J. Math. Phys. 52, 83509 (2011) · Zbl 1272.81065 · doi:10.1063/1.3620412
[31] Noumi, M., Yamada, Y.: A new Lax pair for the sixth Painlevé equation associated with \[{\widehat{\mathfrak{so}}(8)}\] so^(8). In: Microlocal Analysis and Complex Fourier Analysis, pp. 238-252, World Sci. Publ (2002) · Zbl 1047.34105
[32] Novikov D.P.: The Schlesinger system with 2 × 2 matrices and the Belavin-Polyakov-Zamolodchikov equation. Theor. Math. Phys. 161, 1485-1496 (2009). doi:10.1007/s11232-009-0135-y · Zbl 1183.81112 · doi:10.1007/s11232-009-0135-y
[33] Okada S.: Enumeration of symmetry classes of alternating sign matrices and characters of classical groups. J. Algebraic Comb. 23, 43-69 (2006) · Zbl 1088.05012 · doi:10.1007/s10801-006-6028-3
[34] Okamoto K.: Studies on the Painlevé equations. I. Sixth Painlevé equation \[{P_{\rm VI}}\] PVI. Ann. Math. Pure. Appl. 146, 337-381 (1987) · Zbl 0637.34019 · doi:10.1007/BF01762370
[35] Picard E.: Mémoire sur la théorie des fonctions algébriques de deux variables. J. Math. Pure. Appl. V(4), 135-319 (1889) · JFM 21.0775.01
[36] Razumov A.V., Stroganov Yu.G.: A possible combinatorial point for the XYZ spin chain. Theor. Math. Phys. 164, 977-991 (2010) · Zbl 1307.82006 · doi:10.1007/s11232-010-0078-3
[37] Rosengren H.: An Izergin-Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices. Adv. Appl. Math. 43, 137-155 (2009) · Zbl 1173.05300 · doi:10.1016/j.aam.2009.01.003
[38] Rosengren H.: The three-colour model with domain wall boundary conditions. Adv. Appl. Math. 46, 481-535 (2011) · Zbl 1227.05049 · doi:10.1016/j.aam.2010.10.007
[39] Rosengren, H.: Special polynomials related to the supersymmetric eight-vertex model. I. Behaviour at cusps. arXiv:1305.0666 · Zbl 1330.82014
[40] Rosengren, H.: Special polynomials related to the supersymmetric eight-vertex model. II. Schrödinger equation. arXiv:1312.5879 · Zbl 1330.82014
[41] Rosengren, H.: Special polynomials related to the supersymmetric eight-vertex model. III. Painlevé VI equation. arXiv:1405.5318 · Zbl 1330.82014
[42] Rosengren H., Schlosser M.: Elliptic determinant evaluations and the Macdonald identities for affine root systems. Compos. Math. 142, 937-961 (2006) · Zbl 1104.15009 · doi:10.1112/S0010437X0600203X
[43] Stroganov Y.G.: The Izergin-Korepin determinant at a cube root of unity. Theor. Math. Phys. 146, 53-62 (2006) · Zbl 1177.82042 · doi:10.1007/s11232-006-0006-8
[44] Suleimanov B.I.: The Hamilton property of Painlevé equations and the method of isomonodromic deformations. Differ. Equ. 30, 726-732 (1994) · Zbl 0844.34012
[45] Suleimanov B.I.: “Quantum” linearization of Painlevé equations as a component of their L, A pairs. Ufa Math. J. 4, 127-136 (2012)
[46] Tsuchiya O.: Determinant formula for the six-vertex model with reflecting end. J. Math. Phys. 39, 5946-5951 (1998) · Zbl 0938.82007 · doi:10.1063/1.532606
[47] Veselov A.P.: On Darboux-Treibich-Verdier potentials. Lett. Math. Phys. 96, 209-216 (2011) · Zbl 1242.34152 · doi:10.1007/s11005-010-0420-6
[48] Zabrodin A., Zotov A.: Quantum Painlevé-Calogero correspondence for Painlevé VI. J. Math. Phys. 53, 073508 (2012) · Zbl 1276.81082 · doi:10.1063/1.4732534
[49] Zinn-Justin, P.: Six-vertex, loop and tiling models: integrability and combinatorics. Habilitation Thesis, Paris (2008)
[50] Zinn-Justin, P.: Sum rule for the eight-vertex model on its combinatorial line. In: Symmetries, integrable systems and representations, pp. 599-637, Springer (2013). doi:10.1007/978-1-4471-4863-0_26 · Zbl 1272.82012
[51] Zotov A.V., Smirnov A.V.: Modifications of bundles, elliptic integrable systems, and related problems. Theor. Math. Phys. 177, 1281-1338 (2013) · Zbl 1417.37209 · doi:10.1007/s11232-013-0106-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.