×

Longitudinal network models and permutation-uniform Markov chains. (English) Zbl 07748383

Summary: Consider longitudinal networks whose edges turn on and off according to a discrete-time Markov chain with exponential-family transition probabilities. We characterize when their joint distributions are also exponential families with the same parameter, improving data reduction. Further we show that the permutation-uniform subclass of these chains permit interpretation as an independent, identically distributed sequence on the same state space. We then apply these ideas to temporal exponential random graph models, for which permutation uniformity is well suited, and discuss mean-parameter convergence, dyadic independence, and exchangeability. Our framework facilitates our introducing a new network model; simplifies analysis of some network and autoregressive models from the literature, including by permitting closed-form expressions for maximum likelihood estimates for some models; and facilitates applying standard tools to longitudinal-network Markov chains from either asymptotics or single-observation exponential random graph models.
{© 2022 Board of the Foundation of the Scandinavian Journal of Statistics.}

MSC:

62-XX Statistics

Software:

sand

References:

[1] Andersen, E. B. (1970, September). Sufficiency and exponential families for discrete sample spaces. Journal of the American Statistical Association, 65(331), 1248-1255. https://doi.org/10.2307/2284291 · Zbl 0224.62003 · doi:10.2307/2284291
[2] Axler, S. (2015, September 26). Showing that n exponential functions are linearly independent. Mathematics Stack Exchange. https://math.stackexchange.com/a/1451686.
[3] Bannister, M. J., Devanny, W. E., & Eppstein, D. (2014, December 4). ERGMs are hard. arXiv: 1412.1787v1 [cs.DS]. Pre‐published.
[4] Barndorff‐Nielsen, O. E. (1978). Information and exponential families: In statistical theory. John Wiley & Sons. 238 pp. https://doi.org/10.1002/9781118857281 · Zbl 1288.62007 · doi:10.1002/9781118857281
[5] Bhat, B. R. (1988, December). On exponential and curved exponential families in stochastic processes. The Mathematical Scientist, 13(2), 121-134. · Zbl 0662.62007
[6] Bhat, B. R., & Gani, J. M. (1960, December). A note on sufficiency in regular Markov chains. Biometrika, 47(3/4), 452-457. https://doi.org/10.2307/2333317 · Zbl 0108.15003 · doi:10.2307/2333317
[7] Casella, G., & Berger, R. L. (2002). Statistical inference. Duxbury Advanced Series. Twentieth Indian Reprint 2017 Delhi (2nd ed.). Cengage Learning 660 pp.
[8] Chatterjee, S., & Diaconis, P. (2013, November 5). Estimating and understanding exponential random graph models. Annals of Statistics, 41(5), 2428-2461. https://doi.org/10.1214/13‐AOS1155; arXiv: 1102.2650v5 [math.PR]. An earlier version of the preprint contains a § 2.2, apparently cut before publication, that gives a closed‐form formula for the partition function of the Erdős‐Rényi graph model of example 17: “Estimating and Understanding Exponential Random Graph Models.” (2011, April 6).; arXiv: 1102.2650v3 [math.PR]. Pre‐published. · Zbl 1293.62046 · doi:10.1214/13‐AOS1155
[9] Chatterjee, S., Diaconis, P., & Sly, A. (2011, August 8). Random graphs with a given degree sequence. Annals of Applied Probability, 21(4), 1400-1435. https://doi.org/10.1214/10‐AAP728 · Zbl 1234.05206 · doi:10.1214/10‐AAP728
[10] Denny, J. L. (1972, August). Sufficient statistics and discrete exponential families. Annals of Mathematical Statistics, 43(4), 1320-1322. · Zbl 0251.62003
[11] Diaconis, P., & Freedman, D. (1984). Partial exchangeability and sufficiency. In J. K.Ghosh (ed.) & J.Roy (ed.) (Eds.), Statistics: Applications and new directions. Golden Jubilee International Conference on Statistics: Applications and New Directions (Calcutta, Dec. 16-19, 1981) (pp. 205-236). Indian Statistical Institute. Calcutta: Statistical Publication Society.
[12] Diaconis, P., & Freedman, D. (1999). Iterated random functions. SIAM Review, 41(1), 45-76. · Zbl 0926.60056
[13] Feigin, P. D. (1981). Conditional exponential families and a representation theorem for asympotic inference. The Annals of Statistics, 9(3), 597-603. https://doi.org/10.1214/aos/1176345463 · Zbl 0476.62070 · doi:10.1214/aos/1176345463
[14] Fienberg, S. E., Meyer, M. M., & Wasserman, S. S. (1985). Statistical analysis of multiple sociometric relations. Journal of the American Statistical Association, 80(389), 51-67. https://doi.org/10.2307/2288040 · doi:10.2307/2288040
[15] Fienberg, S. E., & Rinaldo, A. (2012, July 23). Maximum likelihood estimation in log‐linear models. The Annals of Statistics, 40(2), 996-1023. https://doi.org/10.1214/12‐AOS986 arXiv: 1104.3618v2 [math.ST]. · Zbl 1274.62389 · doi:10.1214/12‐AOS986
[16] Frank, O. (1991, September). Statistical analysis of change in networks. Statistica Neerlandica, 45(3), 283-293. https://doi.org/10.1111/j.1467‐9574.1991.tb01310.x · Zbl 0745.62094 · doi:10.1111/j.1467‐9574.1991.tb01310.x
[17] Frank, O., & Shafie, T. (2018, June). Random multigraphs and aggregated triads with fixed degrees. Network Science, 6(2), 232-250. https://doi.org/10.1017/nws.2017.31 · doi:10.1017/nws.2017.31
[18] Frank, O., & Strauss, D. (1986, September). Markov graphs. Journal of the American Statistical Association, 81(395), 832-842. https://doi.org/10.2307/2289017 · Zbl 0607.05057 · doi:10.2307/2289017
[19] Gani, J. M. (1955). Some theorems and sufficiency conditions for the maximum‐likelihood estimator of an unknown parameter in a simple Markov chain. Biometrika, 42(3/4), 342-359. https://doi.org/10.1093/biomet/42.3‐4.342.; For a correction to its § IV.1, see “Corrigenda.” In: Biometrika 43 (3/4 Dec. 1956), pp. 497-498. https://doi.org/10.1093/biomet/43.3‐4.497. · Zbl 0066.38602 · doi:10.1093/biomet/43.3‐4.497
[20] Gani, J. M. (1956). Sufficiency conditions in regular Markov chains and certain random walks. Biometrika, 43(3/4), 276-284. https://doi.org/10.2307/2332906 · Zbl 0074.12701 · doi:10.2307/2332906
[21] Goldenberg, A., Zheng, A. X., Fienberg, S. E., & Airoldi, E. M. (2010, February 16). A survey of statistical network models. Foundations and Trends in Machine. Learning, 2(2), 129-233. https://doi.org/10.1561/2200000005; arXiv: 0912.5410 [stat.ME]. · Zbl 1184.68030 · doi:10.1561/2200000005
[22] Goodreau, S. M. (2007, May). Advances in exponential random graph
[(( {p}^{\ast } )\]\) models applied to a large social network. Social Networks, 29(2), 231-248. https://doi.org/10.1016/j.socnet.2006.08.001 · doi:10.1016/j.socnet.2006.08.001
[23] Graham, B. S. (2017, July 24). An econometric model of network formation with degree heterogeneity. Econometrica, 85(4), 1033-1063. https://doi.org/10.3982/ECTA12679 · Zbl 1420.91390 · doi:10.3982/ECTA12679
[24] Gross, E., Karwa, V., & Petrović, S. (2022). Algebraic statistics, tables, and networks: The Fienberg advantage. In A. L.Carriquiry (ed.), J. M.Tanur (ed.), W. F.Eddy (ed.), & M. L.Smykla (ed.) (Eds.), Statistics in the public interest: In memory of Stephen E. Fienberg. Springer Series in the Data Sciences (Ch. 3, pp. 33-49). Springer Nature. https://doi.org/10.1007/978‐3‐030‐75460‐0_3 · doi:10.1007/978‐3‐030‐75460‐0_3
[25] Hanneke, S., Fu, W., & Xing, E. P. (2010). Discrete temporal models of social networks. Electronic Journal of Statistics, 4, 585-605. https://doi.org/10.1214/09‐EJS548 · Zbl 1329.91113 · doi:10.1214/09‐EJS548
[26] Hanson, D. L. (1963). On the representation problem for stationary stochastic processes with trivial tail field. Journal of Mathematics and Mechanics, 12(2), 293-301. · Zbl 0139.34405
[27] Heyde, C. C., & Feigin, P. D. (1975). On efficiency and exponential families in stochastic process estimation. In G. P.Patil (ed.), S.Kotz (ed.), & J. K.Ord (ed.) (Eds.), A modern course on statistical distributions in scientific work. Vol. 1: Models and structures. The NATO Advanced Study Institute on Statistical Distributions in Scientific Work (University of Calgary, Alberta, Canada, July 29-Aug. 10, 1974)NATO Advanced Study Institutes Series C 17 (Ch. 5, pp. 227-240). North Atlantic Treaty Organization. D. Reidel Publishing Company. https://doi.org/10.1007/978‐94‐010‐1842‐5_18 · doi:10.1007/978‐94‐010‐1842‐5_18
[28] Hoff, P. D (2015, September 1). Multilinear tensor regression for longitudinal relational data. Annals of Applied Statistics, 9.3, pp. 1169-1193. https://doi.org/10.1214/15‐AOAS839 · Zbl 1454.62481 · doi:10.1214/15‐AOAS839
[29] Holland, P. W., & Leinhardt, S. (1981, March). An exponential family of probability distributions for directed graphs. Journal of the American Statistical Association, 76(373), 33-50. https://doi.org/10.2307/2287037 · Zbl 0457.62090 · doi:10.2307/2287037
[30] Holland, P. W., & Leinhardt, S. (1977). A dynamic model for social networks. Journal of Mathematical Sociology, 5(1), 5-20. https://doi.org/10.1080/0022250X.1977.9989862 · Zbl 0354.92044 · doi:10.1080/0022250X.1977.9989862
[31] Hudson, I. L. (1982, March). Large sample inference for Markovian exponential families with application to branching processes with immigration. The Australian & New Zealand Journal of Statistics, 24(1), 98-112. · Zbl 0492.62071
[32] Hunter, D. R., Goodreau, S. M., & Handcock, M. S. (2008). Goodness of fit of social network models. Journal of the American Statistical Association, 103(481), 248-258. https://doi.org/10.1198/016214507000000446 · Zbl 1471.62390 · doi:10.1198/016214507000000446
[33] Jacod, J., & Protter, P. (2004). =Probability essentials (2nd ed.). Universitext. Corrected second printing. Springer. 254 pp. https://doi.org/10.1007/978‐3‐642‐55682‐1 · doi:10.1007/978‐3‐642‐55682‐1
[34] Katz, L., & Proctor, C. H. (1959, December). The concept of configuration of interpersonal relations in a group as a time‐dependent stochastic process. Psychometrika, 24(4), 317-327. https://doi.org/10.1007/BF02289814 · doi:10.1007/BF02289814
[35] Kolaczyk, E. D. (2017, June 5). Topics at the frontier of statistics and network analysis: (re)visiting the foundations. In E. C.Wit (ed.) (Ed.), SemStat elements. Cambridge University Press. 124 pp. https://doi.org/10.1017/9781108290159 · Zbl 1398.62005 · doi:10.1017/9781108290159
[36] Kolaczyk, E. D., & Csárdi, G. (2020, June 3). Statistical models for network graphs. In R.Gentleman (ed.), K.Hornik (ed.), & G.Parmigiani (ed.) (Eds.), Statistical analysis of network data with R (Vol. 65, 2nd ed., pp. 87-113). Springer. https://doi.org/10.1007/978‐3‐030‐44129‐6_6 · doi:10.1007/978‐3‐030‐44129‐6_6
[37] Küchler, U., & Sørensen, M. (1997). Exponential families of stochastic processes. Springer Series in Statistics. Springer. 322 pp. https://doi.org/10.1007/b98954 · Zbl 0882.60012 · doi:10.1007/b98954
[38] Lauritzen, S. L., Rinaldo, A., & Sadeghi, K. (2018, June 16). Random networks, graphical models and exchangeability. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(3), 481-508. https://doi.org/10.1111/rssb.12266 arXiv: 1701.08420v2 [math.ST]. · Zbl 1398.62218 · doi:10.1111/rssb.12266
[39] Lauritzen, S. L., Rinaldo, A., & Sadeghi, K. (2019, June 12). On exchangeability in network models. The Journal of Algebraic Statistics, 10(1), 85-114. https://doi.org/10.18409/jas.v10i1.73; arXiv: 1701.08420v2 [math.ST]. · Zbl 1418.60028 · doi:10.18409/jas.v10i1.73
[40] Lehmann, E. L., & Casella, G. (1998). Theory of point estimation. Springer Texts in Statistics (2nd ed.). Springer. 590 pp. https://doi.org/10.1007/b98854 · Zbl 0916.62017 · doi:10.1007/b98854
[41] Marshall, A. W., Olkin, I., & Arnold, B. C. (2011). Inequalities: Theory of majorization and its applications. Springer Series in Statistics. (2nd ed.). Springer. 909 pp. https://doi.org/10.1007/978‐0‐387‐68276‐1 · Zbl 1219.26003 · doi:10.1007/978‐0‐387‐68276‐1
[42] Park, J., & Newman, M. E. J. (2004, December 29). Solution of the two‐star model of a network. Physical Review E, 70(6), 066146. https://doi.org/10.1103/PhysRevE.70.066146; arXiv: cond‐mat/0405457 [cond‐mat.stat‐mech]. · doi:10.1103/PhysRevE.70.066146
[43] Petrović, S. (2017). A survey of discrete methods in (algebraic) statistics for networks. In H. A.Harrington (ed.), M.Omar (ed.), & M.Wright (ed.) (Eds.), Algebraic and geometric methods in discrete mathematics. AMS Special Session on Algebraic and Geometric Methods in Applied Discrete Mathematics (San Antonio, Jan. 11, 2015)Contemporary Mathematics 685 (p. 251). American Mathematical Society. https://doi.org/10.1090/conm/685; arXiv: 1510.02838 [cs.DM]. · Zbl 1362.00040 · doi:10.1090/conm/685
[44] Rinaldo, A., Petrović, S., & Fienberg, S. E. (2013, June 18). Maximum likelihood estimation in the β‐model. The Annals of Statistics, 41(3), 1085-1110. https://doi.org/10.1214/12‐AOS1078; arXiv: 1105.6145v4 [stat.OT]. · Zbl 1292.62052 · doi:10.1214/12‐AOS1078
[45] Robins, G. L., & Pattison, P. E. (2001). Random graph models for temporal processes in social networks. Journal of Mathematical Sociology, 25(1), 5-41. https://doi.org/10.1080/0022250X.2001.9990243 · Zbl 0986.91048 · doi:10.1080/0022250X.2001.9990243
[46] Rosenblatt, M. (1959). Stationary processes as shifts of functions of independent random variables. Journal of Mathematics and Mechanics, 8(5), 665-681. · Zbl 0092.33601
[47] Rosenblatt, M. (1960). Stationary Markov chains and independent random variables. Journal of Mathematics and Mechanics, 9(6), 945-949. Corrected in “Addendum to ”Stationary Markov chains and independent random variables’ M. Rosenblatt, Journal of Mathematics and Mechanics, 1960, p. 945.” In: Journal of Mathematics and Mechanics. 11.2 (1962), p. 317. JSTOR: 24900925. · Zbl 0096.34004
[48] Rubshtein, B.‐Z. (2004, June 3). On a class of one‐sided Markov shifts. arXiv: math/0406059 [math.DS]. Pre‐published.
[49] Rudin, W. (1976). A. A.Arthur (ed.) & S. L.Langman (ed.) (Eds.), Principles of mathematical analysis. International Series in Pure and Applied Mathematics. (3rd ed.). McGraw‐Hill 342 pp. · Zbl 0346.26002
[50] Schwartz, W. K. (2021, December). Algorithms for discrete data in statistics and operations research [PhD thesis]. Chicago: Illinois Institute of Technology. 195 pp. http://hdl.handle.net/10560/islandora:1011986
[51] Shafie, T. (2015, January). A multigraph approach to social network analysis. The Journal of Social Structure, 16(1), 1-21. https://doi.org/10.21307/joss‐2019‐011 · doi:10.21307/joss‐2019‐011
[52] Shalizi, C. R., & Rinaldo, A. (2013, April). Consistency under sampling of exponential random graph models. The Annals of Statistics, 41(2), 508-535. https://doi.org/10.1214/12‐AOS1044 · Zbl 1269.91066 · doi:10.1214/12‐AOS1044
[53] Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics. Sociological Methodology, 31, 361-395. https://doi.org/10.1111/0081‐1750.00099 · doi:10.1111/0081‐1750.00099
[54] Snijders, T. A. B. (2005). Models for longitudinal network data. In P. J.Carrington (ed.), J.Scott (ed.), & S. S.Wasserman (ed.) (Eds.), With an intro. by S. S. Wasserman, J. Scott, & P. J. Carrington. Models and methods in social network analysis. Structural Analysis in the Social Sciences 28. (Ch. 11, pp. 215-247). Cambridge University Press. https://doi.org/10.1017/CBO9780511811395.011 · doi:10.1017/CBO9780511811395.011
[55] Snijders, T. A. B., Pattison, P. E., Robins, G. L., & Handcock, M. S. (2006, August 1). New specifications for exponential random graph models. Sociological Methodology, 36(1), 99-153. https://doi.org/10.1111/j.1467‐9531.2006.00176.x · doi:10.1111/j.1467‐9531.2006.00176.x
[56] Stefanov, V. T. (1991). Noncurved exponential families associated with observations over finite state Markov chains. Scandinavian Journal of Statistics, 18(4), 353-356. · Zbl 0798.62096
[57] Stefanov, V. T. (1995). Explicit limit results for minimal sufficient statistics and maximum likelihood estimators in some Markov processes: exponential families approach. The Annals of Statistics, 23(4), 1073-1101. https://doi.org/10.1214/aos/1176324699 · doi:10.1214/aos/1176324699
[58] Wainwright, M. J., & Jordan, M. I. (2008, November). Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2), 1-305. https://doi.org/10.1561/2200000001 · Zbl 1193.62107 · doi:10.1561/2200000001
[59] Wooldridge, J. M. (2012, September 26). Introductory econometrics: A modern approach (5th ed.). South‐Western Cengage Learning.
[60] Wu, W. B., & Mielniczuk, J. (2010, July). A new look at measuring dependence. In P.Doukhan (ed.), G.Lang (ed.), D.Surgailis (ed.), & G.Teyssière (ed.) (Eds.), Dependence in probability and statistics. Lecture Notes in Statistics (Vol. 200, pp. 123-142). Springer. https://doi.org/10.1007/978‐3‐642‐14104‐1_7 · Zbl 1196.60011 · doi:10.1007/978‐3‐642‐14104‐1_7
[61] Yan, T., Jiang, B., Fienberg, S. E., & Leng, C. (2018, July 11). Statistical inference in a directed network model with covariates. Journal of the American Statistical Association, 114(526), 1-12. https://doi.org/10.1080/01621459.2018.1448829; arXiv: 1609.04558 [math.ST]. · Zbl 1420.62105 · doi:10.1080/01621459.2018.1448829
[62] Yano, K., & Yasutomi, K. (2011). Realizations of an Ergodic Markov chain as a random walk subject to a synchronizing road coloring. Journal of Applied Probability, 48(3), 766-777. https://doi.org/10.1017/S0021900200008305 · Zbl 1234.60072 · doi:10.1017/S0021900200008305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.