×

Ergodicity and Kolmogorov equations for dissipative SPDEs with singular drift: a variational approach. (English) Zbl 1447.60115

The goal of the paper is to study the asymptotic behavior of solutions to semilinear stochastic partial differential equations (PDEs) on a smooth bounded domain. More precisely, the authors prove the existence of invariant measures for the Markovian semigroup generated by the solution to a parabolic semilinear stochastic PDE whose nonlinear drift term satisfies only a kind of symmetry condition on its behavior at infinity, but no restriction on its growth rate is imposed. Thanks to strong integrability properties of invariant measures \(\mu\), the solvability of the associated Kolmogorov equation in the space \(L^1(\mu)\) is then established, and the infinitesimal generator of the transition semigroup is identified as the closure of the Kolmogorov operator. A key role is played by a generalized variational setting. If we compare with the existing literature, similar results were obtained under local Lipschitz-continuity or other suitable growth assumptions on the drift. Another positive aspect of the paper is that the authors use only standard monotonicity assumptions. Concerning the stochastic tools, a priori estimates (which, in turn, are obtained by stochastic calculus) and the generalized Itô formulas are used.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
47D07 Markov semigroups and applications to diffusion processes
47H06 Nonlinear accretive operators, dissipative operators, etc.
37A25 Ergodicity, mixing, rates of mixing
35B40 Asymptotic behavior of solutions to PDEs

References:

[1] Aliprantis, Cd; Border, Kc, Infinite dimensional analysis (2006), Berlin: Springer, Berlin · Zbl 1156.46001
[2] Ambrosetti, A.; Prodi, G., A primer of nonlinear analysis (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0818.47059
[3] Barbu, V., Nonlinear differential equations of monotone types [sic] in Banach spaces (2010), New York: Springer, New York · Zbl 1197.35002
[4] Barbu, V.; Da Prato, G., Ergodicity for nonlinear stochastic equations in variational formulation, Appl. Math. Optim., 53, 2, 121-139 (2006) · Zbl 1109.35123 · doi:10.1007/s00245-005-0838-x
[5] Bourbaki, N., Intégration. Chapitre IX: Intégration sur les espaces topologiques séparés (1969), Paris: Hermann, Paris · Zbl 0189.14201
[6] Cerrai, S., Second order PDE’s in finite and infinite dimension, Lecture Notes in Mathematics, vol. 1762 (2001), Berlin: Springer-Verlag, Berlin · Zbl 0983.60004
[7] Da Prato, G., Kolmogorov equations for stochastic PDEs (2004), Basel: Birkhäuser Verlag, Basel · Zbl 1066.60061
[8] Da Da Prato, G.; Zabczyk, J., Ergodicity for infinite-dimensional systems (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0849.60052
[9] Eberle, A., Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators, Lecture Notes in Mathematics, vol. 1718 (1999), Berlin: Springer-Verlag, Berlin · Zbl 0957.60002
[10] Es-Sarhir, A.; Stannat, W., Invariant measures for semilinear SPDE’s with local Lipschitz drift coefficients and applications, J. Evol. Equ., 8, 1, 129-154 (2008) · Zbl 1156.47042 · doi:10.1007/s00028-007-0354-3
[11] Es-Sarhir, A.; Stannat, W., Improved moment estimates for invariant measures of semilinear diffusions in Hilbert spaces and applications, J. Funct. Anal., 259, 5, 1248-1272 (2010) · Zbl 1202.60097 · doi:10.1016/j.jfa.2010.02.017
[12] Krylov, N.V., Rozovskiı̆, B.L.: Stochastic evolution equations, Current problems in mathematics, Vol. 14 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1979, pp. 71-147, 256. MR 570795 (81m:60116)
[13] Lions, J-L; Magenes, E., Problèmes aux limites non homogènes et applications, vol. 1 (1968), Paris: Dunod, Paris · Zbl 0165.10801
[14] Marinelli, C.; Prévôt, C.; Röckner, M., Regular dependence on initial data for stochastic evolution equations with multiplicative Poisson noise, J. Funct. Anal., 258, 2, 616-649 (2010) · Zbl 1186.60060 · doi:10.1016/j.jfa.2009.04.015
[15] Marinelli, C., Scarpa, L.: Refined existence and regularity results for a class of semilinear dissipative SPDEs. arXiv:1711.11091 · Zbl 1454.60097
[16] Marinelli, C., Scarpa, L.: Well-posedness of monotone semilinear SPDEs with semimartingale noise. arXiv:1805.07562 · Zbl 1407.60087
[17] Marinelli, C.; Scarpa, L., A variational approach to dissipative SPDEs with singular drift, Ann. Probab., 46, 3, 1455-1497 (2018) · Zbl 1454.60097 · doi:10.1214/17-AOP1207
[18] Marinelli, C.; Ziglio, G., Ergodicity for nonlinear stochastic evolution equations with multiplicative Poisson noise, Dyn. Partial Differ. Equ., 7, 1, 1-23 (2010) · Zbl 1203.60088 · doi:10.4310/DPDE.2010.v7.n1.a1
[19] Pardoux, E., Equations aux derivées partielles stochastiques nonlinéaires monotones (1975), Université Paris XI: Ph.D. thesis, Université Paris XI · Zbl 0363.60041
[20] Stannat, W., Stochastic partial differential equations: Kolmogorov operators and invariant measures, Jahresber. Dtsch. Math.-Ver., 113, 2, 81-109 (2011) · Zbl 1221.60093 · doi:10.1365/s13291-011-0016-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.