×

A variational approach to dissipative SPDEs with singular drift. (English) Zbl 1454.60097

Summary: We prove global well-posedness for a class of dissipative semilinear stochastic evolution equations with singular drift and multiplicative Wiener noise. In particular, the nonlinear term in the drift is the superposition operator associated to a maximal monotone graph everywhere defined on the real line, on which neither continuity nor growth assumptions are imposed. The hypotheses on the diffusion coefficient are also very general, in the sense that the noise does not need to take values in spaces of continuous, or bounded, functions in space and time. Our approach combines variational techniques with a priori estimates, both pathwise and in expectation, on solutions to regularized equations.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
47H06 Nonlinear accretive operators, dissipative operators, etc.
46N30 Applications of functional analysis in probability theory and statistics

References:

[1] Albeverio, S., Kawabi, H. and Röckner, M. (2012). Strong uniqueness for both Dirichlet operators and stochastic dynamics to Gibbs measures on a path space with exponential interactions. J. Funct. Anal.262 602-638. · Zbl 1256.47027 · doi:10.1016/j.jfa.2011.09.023
[2] Arendt, W. (2006). Heat Kernels, Lecture Notes of the 9th Internet Seminar on Evolution Equations. Available at https://www.uni-ulm.de/mawi/iaa/members/arendt/.
[3] Arendt, W. and Bukhvalov, A. V. (1994). Integral representations of resolvents and semigroups. Forum Math.6 111-135. · Zbl 0803.47046 · doi:10.1515/form.1994.6.111
[4] Arendt, W., Chill, R., Seifert, C., Vogt, D. and Voigt, J. (2015). Form methods for evolution equations and applications. In Lecture Notes of the 18 th Internet Seminar on Evolution Equations. Available at https://www.mat.tuhh.de/isem18/Phase_1:_The_lectures.
[5] Barbu, V. (1993). Analysis and Control of Nonlinear Infinite-Dimensional Systems. Academic Press, Boston, MA. · Zbl 0776.49005
[6] Barbu, V. (2010). Existence for semilinear parabolic stochastic equations. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.21 397-403. · Zbl 1213.35260 · doi:10.4171/RLM/579
[7] Barbu, V., Da Prato, G. and Röckner, M. (2009). Existence of strong solutions for stochastic porous media equation under general monotonicity conditions. Ann. Probab.37 428-452. · Zbl 1162.76054 · doi:10.1214/08-AOP408
[8] Barbu, V. and Marinelli, C. (2009). Strong solutions for stochastic porous media equations with jumps. Infin. Dimens. Anal. Quantum Probab. Relat. Top.12 413-426. · Zbl 1181.60095 · doi:10.1142/S0219025709003732
[9] Bendikov, A. and Maheux, P. (2007). Nash type inequalities for fractional powers of non-negative self-adjoint operators. Trans. Amer. Math. Soc.359 3085-3097. · Zbl 1122.47014 · doi:10.1090/S0002-9947-07-04020-2
[10] Boccardo, L. and Croce, G. (2014). Elliptic Partial Differential Equations. De Gruyter, Berlin. · Zbl 1321.35053
[11] Bourbaki, N. (1981). Espaces Vectoriels Topologiques. Chapitres 1 à 5, New ed. Masson, Paris. · Zbl 0482.46001
[12] Brézis, H. (1973). Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam. · Zbl 0252.47055
[13] Brézis, H. (1971). Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. In Contributions to Nonlinear Functional Analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) 101-156. Academic Press, New York. · Zbl 0278.47033
[14] Brzeźniak, Z., Maslowski, B. and Seidler, J. (2005). Stochastic nonlinear beam equations. Probab. Theory Related Fields 132 119-149. · Zbl 1071.60053 · doi:10.1007/s00440-004-0392-5
[15] Cerrai, S. (2003). Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Probab. Theory Related Fields 125 271-304. · Zbl 1027.60064 · doi:10.1007/s00440-002-0230-6
[16] Dautray, R. and Lions, J.-L. (1988). Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 2. Springer, Berlin. · Zbl 0664.47001
[17] Davies, E. B. (1990). Heat Kernels and Spectral Theory. Cambridge Univ. Press, Cambridge. · Zbl 0699.35006
[18] Da Prato, G. (2004). Kolmogorov Equations for Stochastic PDES. Birkhäuser, Basel. · Zbl 1066.60061
[19] Engel, K.-J. and Nagel, R. (2000). One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics 194. Springer, New York. · Zbl 0952.47036
[20] Gentil, I. and Imbert, C. (2008). The Lévy-Fokker-Planck equation: \(Φ\)-entropies and convergence to equilibrium. Asymptot. Anal.59 125-138. · Zbl 1170.35337
[21] Haase, M. (2007). Convexity inequalities for positive operators. Positivity 11 57-68. · Zbl 1123.47016 · doi:10.1007/s11117-006-1975-4
[22] Hiriart-Urruty, J.-B. and Lemaréchal, C. (2001). Fundamentals of Convex Analysis. Springer, Berlin. · Zbl 0998.49001
[23] Kato, T. (1995). Perturbation Theory for Linear Operators. Springer, Berlin. Reprint of the 1980 edition. · Zbl 0836.47009
[24] Krylov, N. V. and Rozovskiĭ, B. L. (1979). Stochastic evolution equations. In Current Problems in Mathematics, Vol. 14 (Russian) 71-147, 256. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow.
[25] Kunze, M. and van Neerven, J. (2012). Continuous dependence on the coefficients and global existence for stochastic reaction diffusion equations. J. Differential Equations 253 1036-1068. · Zbl 1270.60071 · doi:10.1016/j.jde.2012.04.013
[26] Kusuoka, S. and Marinelli, C. (2014). On smoothing properties of transition semigroups associated to a class of SDEs with jumps. Ann. Inst. Henri Poincaré Probab. Stat.50 1347-1370. · Zbl 1319.60127 · doi:10.1214/13-AIHP559
[27] Lions, J.-L. and Magenes, E. (1968). Problèmes aux Limites Non Homogènes et Applications. Vol. 1. Dunod, Paris. · Zbl 0165.10801
[28] Liu, W. and Röckner, M. (2015). Stochastic Partial Differential Equations: An Introduction. Springer, Cham. · Zbl 1361.60002
[29] Ma, Z. M. and Röckner, M. (1992). Introduction to the Theory of (Nonsymmetric) Dirichlet Forms. Springer, Berlin. · Zbl 0826.31001
[30] Marinelli, C. On well-posedness of semilinear stochastic evolution equations on \(L_{p}\) spaces. Preprint. Available at arXiv:1512.04323. · Zbl 1390.60245
[31] Marinelli, C. and Quer-Sardanyons, L. (2012). Existence of weak solutions for a class of semilinear stochastic wave equations. SIAM J. Math. Anal.44 906-925. · Zbl 1251.60055 · doi:10.1137/110826667
[32] Ouhabaz, E. M. (2005). Analysis of Heat Equations on Domains. Princeton Univ. Press, Princeton, NJ. · Zbl 1082.35003
[33] Pardoux, É. (1975). Equations aux derivées partielles stochastiques nonlinéaires monotones, Ph.D. Thesis, Univ. Paris XI. · Zbl 0363.60041
[34] Pardoux, E. and Răşcanu, A. (2014). Stochastic Differential Equations, Backward SDES, Partial Differential Equations. Springer, Cham. · Zbl 1321.60005
[35] Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York. · Zbl 0516.47023
[36] Simon, J. (1987). Compact sets in the space \(L^{p}(0,T;B)\). Ann. Mat. Pura Appl. (4) 146 65-96. · Zbl 0629.46031
[37] Strauss, W. A. (1966). On continuity of functions with values in various Banach spaces. Pacific J. Math.19 543-551. · Zbl 0185.20103 · doi:10.2140/pjm.1966.19.543
[38] van Neerven, J. M. A. M., Veraar, M. C. and Weis, L. (2008). Stochastic evolution equations in UMD Banach spaces. J. Funct. Anal.255 940-993. · Zbl 1149.60039 · doi:10.1016/j.jfa.2008.03.015
[39] Varopoulos, N. · Zbl 0813.22003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.