×

Cylinders in Mori fiber spaces: forms of the quintic del Pezzo threefold. (Cylindres dans les fibrations de Mori: formes du volume quintique de del Pezzo.) (English. French summary) Zbl 1445.14027

An \({\mathbb A}^r_{k}\)-cylinder in a normal algebraic variety (defined over \(k\)) is a Zariski open subset \(U\) isomorphic to a product \(Z \times {\mathbb A}^r_{k}\) of some algebraic variety \(Z\) and the \(k\)-affine space od dimension \(r\). It is of interest, see the Introduction of the paper under review, to study closed normal projective varieties containing cylinders, and, since the canonical bundle of \(V\) containing a cylinder is not pseudoeffective, total spaces of Mori Fiber Spaces are a class of varieties where examples of such kind can be found. In this context, it sounds natural to study fibrations containing vertical cylinders, i.e, compatible with the fibration structure. In the paper under review the authors start the study of vertical cylinders in a Mori fiber space \(f:X \to Y\) of relative dimension \(3\). There are four classes of Fano \(3\)-folds of Picard number one containing an \({\mathbb A}^3_{\overline{k}}\)-cylinder: the projective space, the quadric, the del Pezzo quintic threefold \(V_5\) of index two and degree five, and a four dimensional family of prime Fano threefolds \(V_{22}\) of genus twelve. To contain a vertical cylinder is equivalent to the fact that the fiber over the generic point of the target \(Y\) contains a \({\mathbb A}^r_K\) cylinder, where \(K\) is the function field of \(Y\). The main result of the paper states that if \(V\) is a \(K\)-form of \(V_5\), that is a smooth projective variety defined over \(K\) whose base extensions to an algebraic closure \(\overline{K}\) is isomorphic (over \(\overline{K}\)) to \(V_5\), then \(V\) always contains an \({\mathbb A}^2_K\)-cylinder, and it is characterized when it contains a \(3\)-cylinder. As a consequence (over \(\overline{k}\)) when \(V_5\) is the general closed fiber of a Mori Fiber Space \(f:X \to C\) over a curve, then \(X\) contains a vertical \({\mathbb A}^3_{\overline{k}}\)-cylinder with respect to \(f\).

MSC:

14E30 Minimal model program (Mori theory, extremal rays)
14J30 \(3\)-folds
14J45 Fano varieties
14R10 Affine spaces (automorphisms, embeddings, exotic structures, cancellation problem)
14R25 Affine fibrations

References:

[1] Birkar, Caucher; Cascini, Paolo; Hacon, Christopher D.; McKernan, James, Existence of minimal models for varieties of log general type, J. Am. Math. Soc., 23, 2, 405-468 (2010) · Zbl 1210.14019 · doi:10.1090/S0894-0347-09-00649-3
[2] Dubouloz, Adrien; Kishimoto, Takashi, Algebraic varieties and automorphism groups, 75, Explicit biregular/birational geometry of affine threefolds: completions of \(\mathbb{A}^3\) into del Pezzo fibrations and Mori conic bundles, 49-71 (2017), Mathematical Society of Japan · Zbl 1396.14017 · doi:10.2969/aspm/07510049
[3] Dubouloz, Adrien; Kishimoto, Takashi, Cylinders in del Pezzo fibrations, Isr. J. Math., 225, 2, 797-815 (2018) · Zbl 1482.14065 · doi:10.1007/s11856-018-1679-z
[4] Dubouloz, Adrien; Kishimoto, Takashi, Deformations of \(\mathbb{A}^1\)-cylindrical varieties, Math. Ann., 373, 3-4, 1135-1149 (2019) · Zbl 1460.14139 · doi:10.1007/s00208-018-1774-9
[5] Furushima, Mikio, The complete classification of compactifications of \({\bf{C}}^3\) which are projective manifolds with the second Betti number one, Math. Ann., 297, 4, 627-662 (1993) · Zbl 0788.32022 · doi:10.1007/BF01459521
[6] Furushima, Mikio; Nakayama, Noboru, The family of lines on the Fano threefold \({V}_5\), Nagoya Math. J., 116, 111-122 (1989) · Zbl 0731.14025 · doi:10.1017/S0027763000001719
[7] Furushima, Mikio; Nakayama, Noboru, A new construction of a compactification of \({\bf{C}}^3\), Tôhoku Math. J., 41, 4, 543-560 (1989) · Zbl 0703.14025 · doi:10.2748/tmj/1178227726
[8] Iliev, Atanas, The Fano surface of the Gushel’ threefold, Compos. Math., 94, 1, 81-107 (1994) · Zbl 0822.14021
[9] Iliev, Atanas, Lines on the Gushel’ threefold, Indag. Math., New Ser., 5, 3, 307-320 (1994) · Zbl 0840.14027 · doi:10.1016/0019-3577(94)90006-X
[10] Iskovskih, Vasily A., Current problems in mathematics, Vol. 12 (Russian), Anticanonical models of three-dimensional algebraic varieties, 59-157 (1979), VINITI · Zbl 0415.14024
[11] Kishimoto, Takashi; Prokhorov, Yuri; Zaidenberg, Mikhail, Affine algebraic geometry, 54, Group actions on affine cones, 123-163 (2011), American Mathematical Society · Zbl 1257.14039 · doi:10.1090/crmp/054/08
[12] Kishimoto, Takashi; Prokhorov, Yuri; Zaidenberg, Mikhail, \( \mathbb{G}_{\rm a} \)-actions on affine cones, Transform. Groups, 18, 4, 1137-1153 (2013) · Zbl 1297.14061 · doi:10.1007/s00031-013-9246-5
[13] Kishimoto, Takashi; Prokhorov, Yuri; Zaidenberg, Mikhail, Affine cones over Fano threefolds and additive group actions, Osaka J. Math., 51, 4, 1093-1112 (2014) · Zbl 1308.14066
[14] Kolpakov-Miroshnichenko, I. Ya.; Prokhorov, Yuri, Construction of the rationality of fields of invariants of some finite four-dimensional linear groups that are connected with Fano threefolds, Mat. Zametki, 51, 1, 114-117 (1992) · Zbl 0765.14023 · doi:10.1007/BF01229438
[15] Kuznetsov, Alexander G.; Prokhorov, Yuri; Shramov, Constantin A., Hilbert schemes of lines and conics and automorphism groups of Fano threefolds, Jpn. J. Math., 13, 1, 109-185 (2018) · Zbl 1406.14031 · doi:10.1007/s11537-017-1714-6
[16] Micali, Artibano, Sur les algèbres universelles, Ann. Inst. Fourier, 14, 2, 33-87 (1964) · Zbl 0152.02602 · doi:10.5802/aif.173
[17] Mukai, Shigeru; Umemura, Hiroshi, Algebraic geometry (Tokyo/Kyoto, 1982), 1016, Minimal rational threefolds, 490-518 (1983), Springer · Zbl 0526.14006 · doi:10.1007/BFb0099976
[18] Prokhorov, Yuri, Fano threefolds of genus \(12\) and compactifications of \({\bf{C}}^3\), Algebra Anal., 3, 4, 162-170 (1991) · Zbl 0790.14038
[19] Prokhorov, Yuri; Zaidenberg, Mikhail, Examples of cylindrical Fano fourfolds, Eur. J. Math., 2, 1, 262-282 (2016) · Zbl 1375.14206 · doi:10.1007/s40879-015-0051-7
[20] Prokhorov, Yuri; Zaidenberg, Mikhail, Algebraic varieties and automorphism groups, 75, New examples of cylindrical Fano fourfolds, 443-463 (2017), Mathematical Society of Japan · Zbl 1396.14062 · doi:10.2969/aspm/07510443
[21] Serre, Jean-Pierre, Séminaire Dubreil. Algèbre et théorie des nombres (1960/61), Sur les modules projectifs, 1-16 (1963), Secrétariat mathématique · Zbl 0132.41301
[22] Takeuchi, Kiyohiko, Some birational maps of Fano \(3\)-folds, Compos. Math., 71, 3, 265-283 (1989) · Zbl 0712.14025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.