×

Examples of cylindrical Fano fourfolds. (English) Zbl 1375.14206

A quasi-projective algebraic variety is called cylindrical if it contains a Zariski dense open subset of the form \(Z\times\mathbb{A}^{1}\) for some quasi-projective variety \(Z\). The existence of such cylinders in smooth projective varieties is intimately related to that of algebraic actions of the additive group \(\mathbb{G}_{a}\) on their affine cones. In the article under review, the authors describe the construction of families of cylindrical Fano fourfolds of Picard rank \(1\) via explicit Sarkisov links. These include smooth intersections of two quadrics in \(\mathbb{P}^{6}\), del Pezzo fourfolds of degree \(5\), and positive dimensional moduli of Mukai fourfolds of genus \(7\) and \(8\).

MSC:

14R20 Group actions on affine varieties
14J45 Fano varieties
14J50 Automorphisms of surfaces and higher-dimensional varieties
14R05 Classification of affine varieties

References:

[1] Alzati, A., Sierra, J.C.: Special birational transformations of projective spaces (2012). arXiv:1203.5690 · Zbl 1358.14017
[2] Ando, T.: On extremal rays of the higher-dimensional varieties. Invent. Math. 81(2), 347-357 (1985) · Zbl 0554.14001 · doi:10.1007/BF01389057
[3] Andreatta, M., Wiśniewski, J.A.: On contractions of smooth varieties. J. Algebraic Geom. 7(2), 253-312 (1998) · Zbl 0966.14012
[4] Cheltsov, I.; Cheltsov, I. (ed.); etal., Del Pezzo surfaces and local inequalities, No. 79, 83-101 (2014), Berlin · Zbl 1327.14174
[5] Cheltsov, I., Park, J., Won, J.: Affine cones over smooth cubic surfaces (2013). J. Eur. Math. Soc. (to appear). arXiv:1303.2648 · Zbl 1386.14068
[6] Debarre, O., Iliev, A., Manivel, L.: On the period map for prime Fano threefolds of degree 10. J. Algebraic Geom. 21(1), 21-59 (2012) · Zbl 1250.14029 · doi:10.1090/S1056-3911-2011-00594-8
[7] Dolgachev, I.V.: Classical Algebraic Geometry. Cambridge University Press, Cambridge (2012) · Zbl 1252.14001 · doi:10.1017/CBO9781139084437
[8] Fujita, T.: On the structure of polarized manifolds with total deficiency one, I. J. Math. Soc. Japan 32(4), 709-725 (1980) · Zbl 0474.14017 · doi:10.2969/jmsj/03240709
[9] Fujita, T.: On the structure of polarized manifolds with total deficiency one, II. J. Math. Soc. Japan 33(3), 415-434 (1981) · Zbl 0474.14018 · doi:10.2969/jmsj/03330415
[10] Fujita, T.: On the structure of polarized manifolds with total deficiency one, III. J. Math. Soc. Japan 36(1), 75-89 (1984) · Zbl 0541.14036 · doi:10.2969/jmsj/03610075
[11] Fulton, W.: Intersection Theory. 2nd ed. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2. Springer, Berlin (1998) · Zbl 0885.14002
[12] Furushima, M.: Complex analytic compactifications of \[\mathbf{C}^3\] C3. Compositio Math. 76(1-2), 163-196 (1990) · Zbl 0721.32012
[13] Furushima, M., Nakayama, N.: The family of lines on the Fano threefold \[V_5\] V5. Nagoya Math. J. 116, 111-122 (1989) · Zbl 0731.14025
[14] Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Pure and Applied Mathematics. Wiley-Interscience, New York (1978) · Zbl 0408.14001
[15] Iskovskikh, V.A., Prokhorov, Yu.G.: Fano Varieties. In: Parshin, A.N., Shafarevich, I.R. (eds.) Algebraic Geometry V. Encyclopaedia of Mathematical Sciences, vol. 47. Springer, Berlin (1999) · Zbl 0912.14013
[16] Kishimoto, T., Prokhorov, Yu., Zaidenberg, M.: Group actions on affine cones. In: Affine Algebraic Geometry. CRM Proceedings & Lecture Notes, vol. 54, pp. 123-163. American Mathematical Society, Providence (2011) · Zbl 1257.14039
[17] Kishimoto, T., Prokhorov, Yu., Zaidenberg, M.: \[ \mathbb{G}_{\rm a}Ga\]-actions on affine cones. Transform. Groups 18(4), 1137-1153 (2013) · Zbl 1297.14061 · doi:10.1007/s00031-013-9246-5
[18] Kishimoto, T., Prokhorov, Yu., Zaidenberg, M.: Affine cones over Fano threefolds and additive group actions. Osaka J. Math. 51(4), 1093-1112 (2014) · Zbl 1308.14066
[19] Kishimoto, T., Prokhorov, Yu., Zaidenberg, M.: Unipotent group actions on del Pezzo cones. Algebraic Geom. 1(1), 46-56 (2014) · Zbl 1418.14016 · doi:10.14231/AG-2014-003
[20] Mukai, S.: Biregular classification of Fano 3-folds and Fano manifolds of coindex 3. Proc. Nat. Acad. Sci. U.S.A. 86(9), 3000-3002 (1989) · Zbl 0679.14020 · doi:10.1073/pnas.86.9.3000
[21] Prokhorov, Yu.G.: Rationality constructions of some Fano fourfolds of index 2. Moscow Univ. Math. Bull. 48(2), 32-35 (1993) · Zbl 0808.14032
[22] Prokhorov, Yu.G.: Compactifications of \[\mathbf{C}^4\] C4 of index \[33. In\]: Tikhomirov, A., Tyurin, A. (eds.) Algebraic Geometry and its Applications (Yaroslavl, 1992). Aspects of Mathematics, vol. E25, pp. 159-169. Vieweg, Braunschweig (1994) · Zbl 0816.32021
[23] Prokhorov, Yu.: \[G\] G-Fano threefolds, I. Adv. Geom. 13(3), 389-418 (2013) · Zbl 0731.14025
[24] Reid, M.: The Complete Intersection of Two or More Quadrics. PhD thesis, Trinity College, Cambridge (1972). http://homepages.warwick.ac.uk/ masda/3folds/qu.pdf
[25] Shin, K.-H.: 3-Dimensional Fano varieties with canonical singularities. Tokyo J. Math. 12(2), 375-385 (1989) · Zbl 0708.14025 · doi:10.3836/tjm/1270133187
[26] Todd, J.A.: The locus representing the lines of four-dimensional space and its application to linear complexes in four dimensions. Proc. London Math. Soc. S2-30, 513-550 (1930) · JFM 56.0576.05 · doi:10.1112/plms/s2-30.1.513
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.