×

Some new facts about sequential quadratic programming methods employing second derivatives. (English) Zbl 1349.90764

Summary: For the sequential quadratic programming method (SQP), we show that close to a solution satisfying the same assumptions that are required for its local quadratic convergence (namely uniqueness of the Lagrange multipliers and the second-order sufficient optimality condition), the direction given by the SQP subproblem using the Hessian of the Lagrangian is a descent direction for the standard \(\ell_1\)-penalty function. We emphasize that this property is not straightforward at all, because the Hessian of the Lagrangian need not be positive definite under these assumptions or, in fact, under any other reasonable set of assumptions. In particular, this descent property was not known previously, under any assumptions (even including the stronger linear independence constraint qualification, strict complementarity, etc.). We also check the property in question by experiments on nonconvex problems from the Hock-Schittkowski test collection for a model algorithm. While to propose any new and complete SQP algorithm is not our goal here, our experiments confirm that the descent condition, and a model method based on it, work as expected. This indicates that the new theoretical findings that we report might be useful for full/practical SQP implementations which employ second derivatives and linesearch for the \(\ell_1\)-penalty function. In particular, our results imply that in SQP methods where using subproblems without Hessian modifications is an option, this option has a solid theoretical justification at least on late iterations.

MSC:

90C30 Nonlinear programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
90C55 Methods of successive quadratic programming type
65K05 Numerical mathematical programming methods

Software:

PLCP; SQPlab
Full Text: DOI

References:

[1] DOI: 10.1017/S0962492900002518 · doi:10.1017/S0962492900002518
[2] Bonnans J.F., Numerical Optimization. Theoretical and Practical Aspects, 2. ed. (2006)
[3] DOI: 10.1007/BF01582294 · Zbl 0683.90070 · doi:10.1007/BF01582294
[4] DOI: 10.1137/060674004 · Zbl 1158.49035 · doi:10.1137/060674004
[5] DOI: 10.1007/s10107-008-0248-3 · Zbl 1184.90127 · doi:10.1007/s10107-008-0248-3
[6] DOI: 10.1137/090776664 · Zbl 1235.90147 · doi:10.1137/090776664
[7] Gill P.E., Practical Optimization (1981) · Zbl 0503.90062
[8] DOI: 10.1137/080744542 · Zbl 1202.49039 · doi:10.1137/080744542
[9] DOI: 10.1137/080744554 · Zbl 1202.49040 · doi:10.1137/080744554
[10] DOI: 10.1017/S0962492904000248 · Zbl 1119.65337 · doi:10.1017/S0962492904000248
[11] Heinkenschloss M., SIAM J. Optim. pp 283– (2001)
[12] DOI: 10.1007/978-3-642-48320-2 · doi:10.1007/978-3-642-48320-2
[13] DOI: 10.1137/120899194 · Zbl 1298.49046 · doi:10.1137/120899194
[14] DOI: 10.1137/090758015 · Zbl 1211.90233 · doi:10.1137/090758015
[15] DOI: 10.1007/978-3-319-04247-3 · Zbl 1304.49001 · doi:10.1007/978-3-319-04247-3
[16] DOI: 10.1007/s10957-014-0580-0 · Zbl 1310.65063 · doi:10.1007/s10957-014-0580-0
[17] DOI: 10.1093/imanum/drq037 · Zbl 1246.65093 · doi:10.1093/imanum/drq037
[18] Nocedal J., Numerical Optimization, 2. ed. (2006)
[19] DOI: 10.1007/s10107-007-0180-y · Zbl 1176.90579 · doi:10.1007/s10107-007-0180-y
[20] DOI: 10.1002/9780470400531.eorms0978 · doi:10.1002/9780470400531.eorms0978
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.