×

Accelerating convergence of a globalized sequential quadratic programming method to critical Lagrange multipliers. (English) Zbl 1482.90210

Summary: This paper concerns the issue of asymptotic acceptance of the true Hessian and the full step by the sequential quadratic programming algorithm for equality-constrained optimization problems. In order to enforce global convergence, the algorithm is equipped with a standard Armijo linesearch procedure for a nonsmooth exact penalty function. The specificity of considerations here is that the standard assumptions for local superlinear convergence of the method may be violated. The analysis focuses on the case when there exist critical Lagrange multipliers, and does not require regularity assumptions on the constraints or satisfaction of second-order sufficient optimality conditions. The results provide a basis for application of known acceleration techniques, such as extrapolation, and allow the formulation of algorithms that can outperform the standard SQP with BFGS approximations of the Hessian on problems with degenerate constraints. This claim is confirmed by some numerical experiments.

MSC:

90C30 Nonlinear programming
90C55 Methods of successive quadratic programming type
49M05 Numerical methods based on necessary conditions
49M15 Newton-type methods
65K05 Numerical mathematical programming methods
65K10 Numerical optimization and variational techniques

Software:

MacMPEC; DEGEN; PLCP; SQPlab
Full Text: DOI

References:

[1] Bonnans, JF; Gilbert, JCh; Lemaréchal, C.; Sagastizábal, C., Numerical Optimization. Theoretical and Practical Aspects (2006), Berlin: Springer, Berlin · Zbl 1108.65060
[2] Dolan, ED; More, JJ, Benchmarking optimization software with performance profiles, Math. Program., 91, 201-213 (2002) · Zbl 1049.90004 · doi:10.1007/s101070100263
[3] Fischer, A.; Izmailov, AF; Scheck, W., Adjusting dual iterates in the presence of critical Lagrange multipliers, SIAM J. Optim., 30, 1555-1581 (2020) · Zbl 1445.90105 · doi:10.1137/19M1255380
[4] Fischer, A.; Izmailov, AF; Solodov, MV, Unit stepsize for the Newton method close to critical solutions, Math. Program., 187, 697-721 (2021) · Zbl 1470.65102 · doi:10.1007/s10107-020-01496-z
[5] Griewank, A.: Analysis and Modification of Mewton’s Method at Singularities. PhD Thesis. Australian National University, Canberra (1980)
[6] Griewank, A., Starlike domains of convergence for Newtons method at singularities, Numer. Math., 35, 95-111 (1980) · Zbl 0419.65034 · doi:10.1007/BF01396373
[7] Griewank, A., On solving nonlinear equations with simple singularities or nearly singular solutions, SIAM Rev., 27, 537-563 (1985) · Zbl 0598.65026 · doi:10.1137/1027141
[8] Izmailov, AF; Kurennoy, AS; Solodov, MV, Critical solutions of nonlinear equations: local attraction for Newton-type methods, Math. Program., 167, 355-379 (2018) · Zbl 1404.90128 · doi:10.1007/s10107-017-1128-5
[9] Izmailov, AF; Kurennoy, AS; Solodov, MV, Critical solutions of nonlinear equations: stability issues, Math. Program., 168, 475-507 (2018) · Zbl 1396.90086 · doi:10.1007/s10107-016-1047-x
[10] Izmailov, A.F., Solodov, M.V.: DEGEN (2009). http://w3.impa.br/ optim/DEGEN_collection.zip
[11] Izmailov, AF; Solodov, MV, Newton-Type Methods for Optimization and Variational Problems (2014), Cham: Springer International Publishing, Cham · Zbl 1304.49001 · doi:10.1007/978-3-319-04247-3
[12] Izmailov, AF; Solodov, MV, Stabilized SQP revisited, Math. Program., 133, 93-120 (2012) · Zbl 1245.90145 · doi:10.1007/s10107-010-0413-3
[13] Izmailov, AF; Solodov, MV, Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it, TOP, 23, 1-26 (2015) · Zbl 1317.90279 · doi:10.1007/s11750-015-0372-1
[14] Izmailov, AF; Solodov, MV, Some new facts about sequential quadratic programming methods employing second derivatives, Optim. Meth. Software, 31, 1111-1131 (2016) · Zbl 1349.90764 · doi:10.1080/10556788.2016.1177528
[15] Izmailov, AF; Solodov, MV; Uskov, EI, Combining stabilized SQP with the augmented Lagrangian algorithm Comput, Optim. Appl., 62, 405-429 (2015) · Zbl 1353.90144 · doi:10.1007/s10589-015-9744-6
[16] Leyffer, S.: MacMPEC (2002). http://wiki.mcs.anl.gov/leyffer/index.php/MacMPEC
[17] Li, D.-H., Qi, L.: Stabilized SQP method via linear equations. Applied Mathematics Technical Reptort AMR00/5. University of New South Wales, Sydney (2000)
[18] Nocedal, J.; Wright, SJ, Numerical Optimization (2006), New York: Springer, New York · Zbl 1104.65059
[19] Wright, SJ, Superlinear convergence of a stabilized SQP method to a degenerate solution, Comput. Optim. Appl., 11, 253-275 (1998) · Zbl 0917.90279 · doi:10.1023/A:1018665102534
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.