×

Semi-infinite highest weight categories. (English) Zbl 07807561

Memoirs of the American Mathematical Society 1459. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-6783-8/pbk; 978-1-4704-7716-5/ebook). v, 152 p. (2024).
Highest weight categories appear frequently in algebraic Lie theory, for example as blocks of the BGG category \(\mathcal{O}\) of a complex semi-simple Lie algebra. Since its inception, many different generalisations of highest weight categories have appeared.
Going from highest weight categories to module categories of standardly stratified algebras two types of standard modules arise: the proper standard modules and the standard modules. The multiplicity of the top of the standard module in the corresponding proper standard module is exactly one, whereas this condition is relaxed for the corresponding standard module. In particular, instead of just modules admitting a filtration by standard modules, one can study modules admitting a filtration by a mix of standard and proper standard modules. In fact, various generalisations of quasi-hereditary algebras are obtained by imposing the regular module to admit such mix filtrations: for instance, standardly stratified algebras, properly stratified algebras and CPS-algebras, among many others.
However, the formalism of the previous notions mentioned is not yet enough to cover further additional cases of interest like the category of finite-dimensional rational representations of a reductive algebraic group. Also, the terminology used for generalisations of quasi-hereditary algebras is sometimes not consistent in the literature, with the same term being used for different concepts.
In this paper, the authors unify many generalisations of highest weight categories (over algebraically closed fields) and hugely develop the theory to the infinite-dimensional world by dealing with generalisations of highest weight categories in four different settings: finite abelian, essentially finite abelian, Schurian and locally finite abelian categories leading to the concepts of lower finite and upper finite highest weight categories. For each of these, they study their strata and properties, including their fundamental homological properties. Although with a different name, the concept of a lower finite highest weight category can be traced back to the classic work of E. Cline et al. [J. Reine Angew. Math. 391, 85–99 (1988; Zbl 0657.18005)].
The authors show that these categories admit objects called \(\varepsilon\)-tilting generators, capturing the idea of characteristic tilting and cotilting modules from the classical case. Using these, the authors extend Ringel duality to these categories. In particular, the authors extend Ringel duality to a correspondence between lower finite highest weight categories and upper finite highest weight categories.
This paper is divided in 6 chapters and all categories in this paper are linear over an algebraically closed field. Chapter 1 is devoted to the introduction. In Chapter 2, the four settings of study are introduced and elementary properties about these are given. The reader is warned that the terminology used in this paper might differ sometimes with other sources in the literature. Here, by a Schurian category the authors mean any category which is equivalent to the category of locally finite-dimensional modules over a locally finite-dimensional locally unital algebra. Here a finite abelian (resp. locally finite abelian, essentially finite abelian) category means any category equivalent to the category of all finite-dimensional modules over a finite dimensional algebra (resp. unital algebra, essentially finite-dimensional locally unital algebra) over an algebraically closed field.
In Chapter 3, the authors present the definitions and general properties of the strata of finite (resp. essentially finite, upper finite, lower finite) \(\varepsilon\)-stratified categories. The concept of finite (resp. essentially finite, upper finite, lower finite) \(\varepsilon\)-stratified category is the generalisation of highest weight category in the setup of finite abelian (resp. essentially finite abelian, Schurian, locally finite abelian) categories. Since essentially finite abelian categories are locally finite abelian categories with enough projectives and injectives, the two extreme cases are the upper finite \(\varepsilon\)-stratified categories and the lower finite \(\varepsilon\)-stratified categories.
In Chapter 4, the concept of characteristic tilting module is generalised to the semi-infinite setup. These new objects are called \(\varepsilon\)-tilting generators. Depending on the choice of sign function \(\varepsilon\), this object might be a full tilting object, a full cotilting object or neither. This object is used to define the Ringel dual, and the phenomenon of Ringel duality is then extended to these general setups. The authors prove that the \(\varepsilon\)-tilting generators are independent of the sign function \(\varepsilon\) whenever the underlying category possesses Gorensteiness properties and a quasi-Frobenius strata.
In the classical case, highest weight categories are realised as module categories of quasi-hereditary algebras. In Chapter 5, the authors use Ringel duality to obtain this analogue for upper finite highest weight categories. In Chapter 6, the authors exhibit several examples that fit in their setup. For instance, the category of finite-dimensional rational representations of a reductive algebraic group is an example of a lower finite highest weight category.

MSC:

16-02 Research exposition (monographs, survey articles) pertaining to associative rings and algebras
16G10 Representations of associative Artinian rings
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
08C20 Natural dualities for classes of algebras
20G05 Representation theory for linear algebraic groups
20G42 Quantum groups (quantized function algebras) and their representations
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras

Citations:

Zbl 0657.18005

References:

[1] \'{A}goston, Istv\'{a}n, Stratified algebras, C. R. Math. Acad. Sci. Soc. R. Can., 22-28 (1998) · Zbl 0914.16010
[2] \'{A}goston, Istv\'{a}n, Standardly stratified algebras and tilting, J. Algebra, 144-160 (2000) · Zbl 0949.16012 · doi:10.1006/jabr.1999.8154
[3] Andersen, Henning Haahr, Tilting modules and cellular categories, J. Pure Appl. Algebra, 106366, 29 pp. (2020) · Zbl 1477.20090 · doi:10.1016/j.jpaa.2020.106366
[4] Andersen, Henning. Haahr, Representations of quantum groups at a \(p\) th root of unity and of semisimple groups in characteristic \(p\): independence of \(p\), Ast\'{e}risque, 321 pp. (1994) · Zbl 0802.17009
[5] Andersen, Henning Haahr, Cellular structures using \(U_q\)-tilting modules, Pacific J. Math., 21-59 (2018) · Zbl 1425.17005 · doi:10.2140/pjm.2018.292.21
[6] Andersen, Henning Haahr, Diagram categories for \(\mathbf{U}_q\)-tilting modules at roots of unity, Transform. Groups, 29-89 (2017) · Zbl 1427.16025 · doi:10.1007/s00031-016-9363-z
[7] Arakawa, Tomoyuki, On the restricted Verma modules at the critical level, Trans. Amer. Math. Soc., 4683-4712 (2012) · Zbl 1352.17025 · doi:10.1090/S0002-9947-2012-05467-5
[8] Arakawa, Tomoyuki, The linkage principle for restricted critical level representations of affine Kac-Moody algebras, Compos. Math., 1787-1810 (2012) · Zbl 1343.17016 · doi:10.1112/S0010437X12000395
[9] Arkhipov, Sergey M., Semi-infinite cohomology of associative algebras and bar duality, Internat. Math. Res. Notices, 833-863 (1997) · Zbl 0884.16025 · doi:10.1155/S1073792897000548
[10] Balagovic, Martina, Translation functors and decomposition numbers for the periplectic Lie superalgebra \(\mathfrak{p}(n)\), Math. Res. Lett., 643-710 (2019) · Zbl 1435.17011 · doi:10.4310/MRL.2019.v26.n3.a2
[11] Bao, Huanchen, A new approach to Kazhdan-Lusztig theory of type \(B\) via quantum symmetric pairs, Ast\'{e}risque, vii+134 pp. (2018) · Zbl 1411.17001
[12] Be\u{\i }linson, Aleksandr A., Analysis and topology on singular spaces, I. Faisceaux pervers, Ast\'{e}risque, 5-171 (1981), Soc. Math. France, Paris
[13] Beligiannis, Apostolos, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc., viii+207 pp. (2007) · Zbl 1124.18005 · doi:10.1090/memo/0883
[14] Bellamy, Gwyn, Highest weight theory for finite-dimensional graded algebras with triangular decomposition, Adv. Math., 361-419 (2018) · Zbl 1464.16042 · doi:10.1016/j.aim.2018.03.011
[15] Bezrukavnikov, Roman, On Koszul duality for Kac-Moody groups, Represent. Theory, 1-98 (2013) · Zbl 1326.20051 · doi:10.1090/S1088-4165-2013-00421-1
[16] Jonathan Brundan, Representations of the oriented skein category, Preprint, 1712.08953, (2017).
[17] Brundan, Jonathan, Categorification and higher representation theory. Categorical actions and crystals, Contemp. Math., 105-147 (2017), Amer. Math. Soc., Providence, RI · Zbl 1362.81008 · doi:10.1090/conm/683
[18] Brundan, Jonathan, Type C blocks of super category \(\mathcal O\), Math. Z., 867-901 (2019) · Zbl 1446.17029 · doi:10.1007/s00209-019-02400-y
[19] Brundan, Jonathan, Tensor product categorifications and the super Kazhdan-Lusztig conjecture, Int. Math. Res. Not. IMRN, 6329-6410 (2017) · Zbl 1405.17045 · doi:10.1093/imrn/rnv388
[20] Brundan, Jonathan, Heisenberg and Kac-Moody categorification, Selecta Math. (N.S.), Paper No. 74, 62 pp. (2020) · Zbl 1489.17020 · doi:10.1007/s00029-020-00602-5
[21] Brundan, Jonathan, Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup, J. Eur. Math. Soc. (JEMS), 373-419 (2012) · Zbl 1243.17004 · doi:10.4171/JEMS/306
[22] Brundan, Jonathan, Gradings on walled Brauer algebras and Khovanov’s arc algebra, Adv. Math., 709-773 (2012) · Zbl 1326.17006 · doi:10.1016/j.aim.2012.05.016
[23] Zhu, Bin, On good filtration dimensions for standardly stratified algebras, Comm. Algebra, 1603-1614 (2004) · Zbl 1068.16008 · doi:10.1081/AGB-120028802
[24] Carter, Roger W., Lie algebras of finite and affine type, Cambridge Studies in Advanced Mathematics, xviii+632 pp. (2005), Cambridge University Press, Cambridge · Zbl 1110.17001 · doi:10.1017/CBO9780511614910
[25] Xiao-Wu Chen, Gorenstein homological algebra of Artin algebras, Preprint, 1712.04587, (2017).
[26] Chen, Chih-Whi, The primitive spectrum and category \({\mathcal{O}}\) for the periplectic Lie superalgebra, Canad. J. Math., 625-655 (2020) · Zbl 1459.17015 · doi:10.4153/s0008414x18000081
[27] Cline, Edward, Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math., 85-99 (1988) · Zbl 0657.18005
[28] de Faria, Edson, Quasisymmetric distortion and rigidity of expanding endomorphisms of \(S^1\), Proc. Amer. Math. Soc., 1949-1957 (1996) · Zbl 0856.58030 · doi:10.1090/S0002-9939-96-03218-2
[29] Coulembier, Kevin, Tensor ideals, Deligne categories and invariant theory, Selecta Math. (N.S.), 4659-4710 (2018) · Zbl 1404.18017 · doi:10.1007/s00029-018-0433-z
[30] Coulembier, Kevin, The classification of blocks in BGG category \(\mathcal{O} \), Math. Z., 821-837 (2020) · Zbl 1483.17009 · doi:10.1007/s00209-019-02376-9
[31] Coulembier, Kevin, Some homological properties of ind-completions and highest weight categories, J. Algebra, 341-367 (2020) · Zbl 1451.18024 · doi:10.1016/j.jalgebra.2020.05.039
[32] Coulembier, Kevin, Monoidal abelian envelopes, Compos. Math., 1584-1609 (2021) · Zbl 1471.18020 · doi:10.1112/S0010437X21007399
[33] Coulembier, Kevin, Borelic pairs for stratified algebras, Adv. Math., 53-115 (2019) · Zbl 1461.16012 · doi:10.1016/j.aim.2019.01.002
[34] Cruz, Tiago, On properly stratified Gorenstein algebras, J. Pure Appl. Algebra, Paper No. 106757, 15 pp. (2021) · Zbl 1490.16023 · doi:10.1016/j.jpaa.2021.106757
[35] Deligne, Pierre, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, ii+414 pp. (1982), Springer-Verlag, Berlin-New York · Zbl 0465.00010
[36] Deodhar, Vinay V., Structure of some categories of representations of infinite-dimensional Lie algebras, Adv. in Math., 92-116 (1982) · Zbl 0491.17008 · doi:10.1016/S0001-8708(82)80014-5
[37] Dlab, Vlastimil, Quasi-hereditary algebras revisited, An. \c{S}tiin\c{t}. Univ. Ovidius Constan\c{t}a Ser. Mat., 43-54 (1996) · Zbl 0873.16008
[38] Dlab, Vlastimil, Properly stratified algebras, C. R. Acad. Sci. Paris S\'{e}r. I Math., 191-196 (2000) · Zbl 0964.16009 · doi:10.1016/S0764-4442(00)01612-8
[39] Dlab, Vlastimil, Representations of algebras and related topics. The module theoretical approach to quasi-hereditary algebras, London Math. Soc. Lecture Note Ser., 200-224 (1990), Cambridge Univ. Press, Cambridge · Zbl 0793.16006
[40] Donkin, Stephen, Rational representations of algebraic groups, Lecture Notes in Mathematics, vii+254 pp. (1985), Springer-Verlag, Berlin · Zbl 0586.20017 · doi:10.1007/BFb0074637
[41] Donkin, Stephen, On Schur algebras and related algebras. I, J. Algebra, 310-328 (1986) · Zbl 0606.20038 · doi:10.1016/0021-8693(86)90218-8
[42] Donkin, Stephen, On tilting modules for algebraic groups, Math. Z., 39-60 (1993) · Zbl 0798.20035 · doi:10.1007/BF02571640
[43] Donkin, Stephen, The \(q\)-Schur algebra, London Mathematical Society Lecture Note Series, x+179 pp. (1998), Cambridge University Press, Cambridge · Zbl 0927.20003 · doi:10.1017/CBO9780511600708
[44] Du, Jie, Based algebras and standard bases for quasi-hereditary algebras, Trans. Amer. Math. Soc., 3207-3235 (1998) · Zbl 0908.16015 · doi:10.1090/S0002-9947-98-02305-8
[45] Ehrig, Michael, Representation theory-current trends and perspectives. On the category of finite-dimensional representations of \(\operatorname{OSp}(r|2n)\): Part I, EMS Ser. Congr. Rep., 109-170 (2017), Eur. Math. Soc., Z\"{u}rich · Zbl 1425.17007
[46] Michael Ehrig and Catharina Stroppel, On the category of finite dimensional representations of \(OSp(r \vert 2n)\): Part II, Preprint, (2021). · Zbl 1425.17007
[47] Elias, Ben, Trace decategorification of the Hecke category, J. Algebra, 615-634 (2016) · Zbl 1368.18003 · doi:10.1016/j.jalgebra.2015.11.028
[48] Ben Elias and Ivan Losev, Modular representation theory in type A via Soergel bimodules, Preprint, 1701.00560, (2017).
[49] Elias, Ben, Soergel calculus, Represent. Theory, 295-374 (2016) · Zbl 1427.20006 · doi:10.1090/ert/481
[50] Entova-Aizenbud, Inna, Categorical actions and multiplicities in the Deligne category \(\underline{Rep}(GL_t)\), J. Algebra, 391-431 (2018) · Zbl 1401.18020 · doi:10.1016/j.jalgebra.2018.02.016
[51] Entova-Aizenbud, Inna, Deligne categories and the limit of categories \(\text{Rep}(GL(m|n))\), Int. Math. Res. Not. IMRN, 4602-4666 (2020) · Zbl 1477.18034 · doi:10.1093/imrn/rny144
[52] Erdmann, Karin, On the global and \(\nabla \)-filtration dimensions of quasi-hereditary algebras, J. Pure Appl. Algebra, 95-111 (2004) · Zbl 1062.16007 · doi:10.1016/j.jpaa.2004.04.005
[53] Etingof, Pavel, Tensor categories, Mathematical Surveys and Monographs, xvi+343 pp. (2015), American Mathematical Society, Providence, RI · Zbl 1365.18001 · doi:10.1090/surv/205
[54] Fiebig, Peter, Centers and translation functors for the category \(\mathcal{O}\) over Kac-Moody algebras, Math. Z., 689-717 (2003) · Zbl 1021.17007 · doi:10.1007/s00209-002-0462-2
[55] Fiebig, Peter, The combinatorics of category \(\mathcal{O}\) over symmetrizable Kac-Moody algebras, Transform. Groups, 29-49 (2006) · Zbl 1122.17016 · doi:10.1007/s00031-005-1103-8
[56] Fiebig, Peter, Symmetries, integrable systems and representations. On the subgeneric restricted blocks of affine category \(\mathcal{O}\) at the critical level, Springer Proc. Math. Stat., 65-84 (2013), Springer, Heidelberg · Zbl 1294.17006 · doi:10.1007/978-1-4471-4863-0\_4
[57] Frenkel, Edward, Localization of \(\mathfrak{g} \)-modules on the affine Grassmannian, Ann. of Math. (2), 1339-1381 (2009) · Zbl 1202.17009 · doi:10.4007/annals.2009.170.1339
[58] Frenkel, Igor, A categorification of finite-dimensional irreducible representations of quantum \(\mathfrak{sl}_2\) and their tensor products, Selecta Math. (N.S.), 379-431 (2006) · Zbl 1188.17011 · doi:10.1007/s00029-007-0031-y
[59] Freyd, Peter J., Abelian categories [MR0166240], Repr. Theory Appl. Categ., 1-190 (2003)
[60] Frisk, Anders, Dlab’s theorem and tilting modules for stratified algebras, J. Algebra, 507-537 (2007) · Zbl 1127.16009 · doi:10.1016/j.jalgebra.2006.08.041
[61] Frisk, Anders, Typical blocks of the category \(\mathcal{O}\) for the queer Lie superalgebra, J. Algebra Appl., 731-778 (2007) · Zbl 1236.17009 · doi:10.1142/S0219498807002417
[62] Frisk, Anders, Properly stratified algebras and tilting, Proc. London Math. Soc. (3), 29-61 (2006) · Zbl 1158.16009 · doi:10.1017/S0024611505015431
[63] Gabriel, Pierre, Des cat\'{e}gories ab\'{e}liennes, Bull. Soc. Math. France, 323-448 (1962) · Zbl 0201.35602
[64] Gao, Mengmeng, Representations of weakly triangular categories, J. Algebra, 481-534 (2023) · Zbl 1515.18011 · doi:10.1016/j.jalgebra.2022.09.025
[65] Goodman, Frederick M., The Temperley-Lieb algebra at roots of unity, Pacific J. Math., 307-334 (1993) · Zbl 0823.16004
[66] Graham, John J., Cellular algebras, Invent. Math., 1-34 (1996) · Zbl 0853.20029 · doi:10.1007/BF01232365
[67] Green, James A., Combinatorics and the Schur algebra, J. Pure Appl. Algebra, 89-106 (1993) · Zbl 0794.20053 · doi:10.1016/0022-4049(93)90015-L
[68] Hazewinkel, Michiel, Algebras, rings and modules. Vol. 2, Mathematics and Its Applications (Springer), xii+400 pp. (2007), Springer, Dordrecht · Zbl 1178.16001 · doi:10.1007/978-1-4020-5141-8
[69] Happel, Dieter, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, x+208 pp. (1988), Cambridge University Press, Cambridge · Zbl 0635.16017 · doi:10.1017/CBO9780511629228
[70] Happel, Dieter, Modules of finite projective dimension and cocovers, Math. Ann., 445-457 (1996) · Zbl 0879.16004 · doi:10.1007/BF01445260
[71] Jantzen, Jens C., Representations of algebraic groups, Pure and Applied Mathematics, xiv+443 pp. (1987), Academic Press, Inc., Boston, MA · Zbl 0654.20039
[72] Jantzen, Jens C., \"{U}ber das Dekompositionsverhalten gewisser modularer Darstellungen halbeinfacher Gruppen und ihrer Lie-Algebren, J. Algebra, 441-469 (1977) · Zbl 0386.20018 · doi:10.1016/0021-8693(77)90252-6
[73] Holmes, Randall R., Brauer-type reciprocity for a class of graded associative algebras, J. Algebra, 117-126 (1991) · Zbl 0749.16024 · doi:10.1016/0021-8693(91)90132-R
[74] Kac, Victor G., Infinite-dimensional Lie algebras, xviii+280 pp. (1985), Cambridge University Press, Cambridge · Zbl 0574.17010
[75] Kac, Victor G., Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. in Math., 97-108 (1979) · Zbl 0427.17011 · doi:10.1016/0001-8708(79)90066-5
[76] Kashiwara, Masaki, Categories and sheaves, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], x+497 pp. (2006), Springer-Verlag, Berlin · Zbl 1118.18001 · doi:10.1007/3-540-27950-4
[77] Keller, Bernhard, Handbook of tilting theory. Derived categories and tilting, London Math. Soc. Lecture Note Ser., 49-104 (2007), Cambridge Univ. Press, Cambridge · Zbl 1106.16300 · doi:10.1017/CBO9780511735134.005
[78] Kleshchev, Alexander S., Affine highest weight categories and affine quasihereditary algebras, Proc. Lond. Math. Soc. (3), 841-882 (2015) · Zbl 1360.16010 · doi:10.1112/plms/pdv004
[79] Kleshchev, Alexander, Based quasi-hereditary algebras, J. Algebra, 504-522 (2020) · Zbl 1445.16009 · doi:10.1016/j.jalgebra.2019.04.034
[80] Koenig, Steffen, Affine cellular algebras, Adv. Math., 139-182 (2012) · Zbl 1268.20008 · doi:10.1016/j.aim.2011.08.010
[81] Kumar, Shrawan, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, xvi+606 pp. (2002), Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 1026.17030 · doi:10.1007/978-1-4612-0105-2
[82] Losev, Ivan, On uniqueness of tensor products of irreducible categorifications, Selecta Math. (N.S.), 345-377 (2015) · Zbl 1359.17013 · doi:10.1007/s00029-014-0172-8
[83] Lusztig, George, Hecke algebras and Jantzen’s generic decomposition patterns, Adv. in Math., 121-164 (1980) · Zbl 0448.20039 · doi:10.1016/0001-8708(80)90031-6
[84] Mac Lane, Saunders, Categories for the working mathematician, Graduate Texts in Mathematics, xii+314 pp. (1998), Springer-Verlag, New York · Zbl 0906.18001
[85] Madsen, Dag Oskar, Quasi-hereditary algebras and the category of modules with standard filtration, S\~{a}o Paulo J. Math. Sci., 68-80 (2017) · Zbl 1383.16008 · doi:10.1007/s40863-016-0046-4
[86] Marko, Frantisek, Pseudocompact algebras and highest weight categories, Algebr. Represent. Theory, 689-728 (2013) · Zbl 1287.17019 · doi:10.1007/s10468-011-9326-y
[87] Mathieu, Olivier, Filtrations of \(G\)-modules, Ann. Sci. \'{E}cole Norm. Sup. (4), 625-644 (1990) · Zbl 0748.20026
[88] Mazorchuk, Volodymyr, Representations of finite dimensional algebras and related topics in Lie theory and geometry. Stratified algebras arising in Lie theory, Fields Inst. Commun., 245-260 (2004), Amer. Math. Soc., Providence, RI · Zbl 1106.17004
[89] Mazorchuk, Volodymyr, Koszul duality for stratified algebras II. Standardly stratified algebras, J. Aust. Math. Soc., 23-49 (2010) · Zbl 1207.16031 · doi:10.1017/S1446788710001497
[90] Mazorchuk, Volodymyr, Finitistic dimension of properly stratified algebras, Adv. Math., 251-265 (2004) · Zbl 1068.16007 · doi:10.1016/j.aim.2003.08.001
[91] Mazorchuk, Volodymyr, On the relation between finitistic and good filtration dimensions, Comm. Algebra, 1903-1916 (2004) · Zbl 1075.16005 · doi:10.1081/AGB-120029912
[92] Mazorchuk, Volodymyr, Categorification of (induced) cell modules and the rough structure of generalised Verma modules, Adv. Math., 1363-1426 (2008) · Zbl 1234.17007 · doi:10.1016/j.aim.2008.06.019
[93] Mitchell, Barry, Rings with several objects, Advances in Math., 1-161 (1972) · Zbl 0232.18009 · doi:10.1016/0001-8708(72)90002-3
[94] Navarro, Gabriel, New techniques in Hopf algebras and graded ring theory. Simple comodules and localization in coalgebras, 141-164 (2007), K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels · Zbl 1146.16021
[95] Neidhardt, Wayne, Translation to and fro over Kac-Moody algebras, Pacific J. Math., 107-153 (1989) · Zbl 0694.17016
[96] Positselski, Leonid, \( \infty \)-tilting theory, Pacific J. Math., 297-334 (2019) · Zbl 1444.18016 · doi:10.2140/pjm.2019.301.297
[97] Reiten, Idun, Handbook of tilting theory. Tilting theory and homologically finite subcategories with applications to quasihereditary algebras, London Math. Soc. Lecture Note Ser., 179-214 (2007), Cambridge Univ. Press, Cambridge · doi:10.1017/CBO9780511735134.008
[98] Reynolds, Andrew, Representations of the oriented Brauer category, 70 pp. (2015), ProQuest LLC, Ann Arbor, MI
[99] Riche, Simon, Tilting modules and the \(p\)-canonical basis, Ast\'{e}risque, ix+184 pp. (2018) · Zbl 1437.20001
[100] Rickard, Jeremy, Equivalences of derived categories for symmetric algebras, J. Algebra, 460-481 (2002) · Zbl 1033.20005 · doi:10.1016/S0021-8693(02)00520-3
[101] Ringel, Claus Michael, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z., 209-223 (1991) · Zbl 0725.16011 · doi:10.1007/BF02571521
[102] Rui, Hebing, Representations of Brauer category and categorification, J. Algebra, 1-36 (2020) · Zbl 1459.17044 · doi:10.1016/j.jalgebra.2020.04.013
[103] Sam, Steven V., The representation theory of Brauer categories I: Triangular categories, Appl. Categ. Structures, 1203-1256 (2022) · Zbl 1511.18018 · doi:10.1007/s10485-022-09689-7
[104] Shan, Peng, Koszul duality of affine Kac-Moody algebras and cyclotomic rational double affine Hecke algebras, Adv. Math., 370-435 (2014) · Zbl 1333.17020 · doi:10.1016/j.aim.2014.05.012
[105] Simson, Daniel, Coalgebras, comodules, pseudocompact algebras and tame comodule type, Colloq. Math., 101-150 (2001) · Zbl 1055.16038 · doi:10.4064/cm90-1-9
[106] Soergel, Wolfgang, Character formulas for tilting modules over Kac-Moody algebras, Represent. Theory, 432-448 (1998) · Zbl 0964.17018 · doi:10.1090/S1088-4165-98-00057-0
[107] Catharina Stroppel, Untersuchungen zu den parabolischen Kazhdan-Lusztig-Polynomen f\"ur affine Weyl-Gruppen, Diploma thesis, University of Freiburg, 1997.
[108] Takeuchi, Mitsuhiro, Morita theorems for categories of comodules, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 629-644 (1977) · Zbl 0385.18007
[109] Wakamatsu, Takayoshi, On modules with trivial self-extensions, J. Algebra, 106-114 (1988) · Zbl 0646.16025 · doi:10.1016/0021-8693(88)90215-3
[110] Wang, Jian Pan, Sheaf cohomology on \(G/B\) and tensor products of Weyl modules, J. Algebra, 162-185 (1982) · Zbl 0493.20023 · doi:10.1016/0021-8693(82)90284-8
[111] Webster, Ben, Canonical bases and higher representation theory, Compos. Math., 121-166 (2015) · Zbl 1393.17029 · doi:10.1112/S0010437X1400760X
[112] Webster, Ben, Knot invariants and higher representation theory, Mem. Amer. Math. Soc., v+141 pp. (2017) · Zbl 1446.57001 · doi:10.1090/memo/1191
[113] Weibel, Charles A., An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, xiv+450 pp. (1994), Cambridge University Press, Cambridge · Zbl 0797.18001 · doi:10.1017/CBO9781139644136
[114] Westbury, Bruce W., Invariant tensors and cellular categories, J. Algebra, 3563-3567 (2009) · Zbl 1242.16016 · doi:10.1016/j.jalgebra.2008.07.004
[115] Xi, Chang Chang, Cellular and affine cellular algebras, Adv. Math. (China), 257-270 (2010) · Zbl 1482.16047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.