×

Filtrations of \(G\)-modules. (English) Zbl 0748.20026

Let \(G\) be a semi-simple, simply connected algebraic group over an algebraically closed field \(K\). Let \(B\) be a Borel subgroup of \(G\). For a character \(\lambda: B\to\mathbb{G}_ m\), let \(L_ \lambda\) denote the associated line bundle on \(G/B\). Let \(F(\lambda)=H^ \circ(G/B,L_ \lambda)\). If characteristic of \(k\) is zero, then for a dominant character \(\lambda\), \(F(\lambda)\) is an irreducible \(G\)-module, and in fact any finite dimensional \(G\)-module is of the form \(F(\lambda)\), for some dominant \(\lambda\); further any finite dimensional \(G\)-module \(M\) is completely reducible, i.e., \(M\) is a direct sum of irreducible \(G\)- modules. This is no longer the case if characteristic of \(k\neq 0\). The author proves that (when \(\text{char }k\neq 0\)) the \(G\)-module \(F(\lambda)\otimes F(\mu)\), for \(\lambda\), \(\mu\) dominant, has a good filtration (here, a filtration of a \(G\)-module \(M\) is said to be good if each subquotient is isomorphic to some \(F(\lambda)\)). This result was first proved by Donkin for \(G\) not containing any component of type \(E_ 7\), \(E_ 8\). Donkin’s proof is based on a case by case analysis. Also Donkin’s proof is long. In this paper the author gives a uniform proof for \(G\) of any type. This paper makes an important contribution to the Theory of Algebraic Groups and Representation theory.

MSC:

20G05 Representation theory for linear algebraic groups
20G15 Linear algebraic groups over arbitrary fields
14M17 Homogeneous spaces and generalizations

References:

[1] H. H. ANDERSEN , The Frobenius morphism on the cohomology of homogeneous vector bundles on G/B . Ann. Math., 112, 1980 , pp. 113-121. MR 81i:14009 | Zbl 0421.20016 · Zbl 0421.20016 · doi:10.2307/1971322
[2] H. H. ANDERSEN , Schubert varieties and Demazure’s character formula , Invent. Math., 79, 1985 , pp. 611-618. MR 86h:14042 | Zbl 0591.14036 · Zbl 0591.14036 · doi:10.1007/BF01388527
[3] H. H. ANDERSEN , The strong linkage principle . J. Reine Angew Math., 315, 1980 , pp. 53-59. MR 81b:14006 | Zbl 0439.20026 · Zbl 0439.20026 · doi:10.1515/crll.1980.315.53
[4] N. BOURBAKI , Groupes et algèbres de Lie (ch. 7 et 8), Diffusion C.C.L.S., Paris, 1975 . · Zbl 0329.17002
[5] M. DEMAZURE , Désingularisation des variétés de Schubert généralisées . Ann. Scient. Ec. Norm. Sup., 7, 1974 , pp. 53-88. Numdam | MR 50 #7174 | Zbl 0312.14009 · Zbl 0312.14009
[6] S. DONKIN , Rational representations of algebraic groups . Springer Verlag, Lect. Notes Math., 1140, 1985 . MR 87b:20054 | Zbl 0586.20017 · Zbl 0586.20017 · doi:10.1007/BFb0074637
[7] S. DONKIN , A filtration for rational modules , Math. Z., 117, 1981 , pp. 1-8. Article | MR 84e:20048 | Zbl 0455.20029 · Zbl 0455.20029 · doi:10.1007/BF01214334
[8] S. DONKIN , Good filtrations of rational modules for reductive groups , Proc. Symp. Pure Math. A.M.S., 177, part 1, 1987 , pp. 69-80. MR 89f:20048 | Zbl 0648.20048 · Zbl 0648.20048
[9] S. DONKIN , Invariants of Unipotent Radicals . Math. Z., 198, 1988 , pp. 117-125. Article | MR 89e:20076 | Zbl 0627.14013 · Zbl 0627.14013 · doi:10.1007/BF01183043
[10] S. DONKIN , On conjugating representations and adjoint representations of semi-simple groups , Inv. Math., 91, 1988 , pp. 137-145. MR 89a:20047 | Zbl 0639.20021 · Zbl 0639.20021 · doi:10.1007/BF01404916
[11] E. FRIEDLANDER , A canonical filtration for certain rational modules . Math. Z, 188, 1985 , pp. 433-438. MR 86h:20062 | Zbl 0535.20022 · Zbl 0535.20022 · doi:10.1007/BF01159188
[12] W. HABOUSH , A short proof of the Kempf vanishing theorem . Invent. Math., 56, 1980 , pp. 109-112. MR 81g:14008 | Zbl 0432.14027 · Zbl 0432.14027 · doi:10.1007/BF01392545
[13] J. HUMPHREYS , Ordinary and modular representations of Chevalley groups II , unpublished, 1977 . · Zbl 0371.20015
[14] J. HUMPHREYS , Linear algebraic groups , G.T.M.21, Springer-Verlag, Berlin, 1975 . MR 53 #633 | Zbl 0325.20039 · Zbl 0325.20039
[15] J. JANTZEN , Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne . J. Reine Angew. Math., 290, 1980 , pp. 157-199. MR 82b:20057 | Zbl 0451.20040 · Zbl 0451.20040 · doi:10.1515/crll.1980.317.157
[16] J. JANTZEN , Representations of algebraic groups , Academic Press, Orlando, 1987 . MR 89c:20001 | Zbl 0654.20039 · Zbl 0654.20039
[17] A. JOSEPH , On the Demazure character formula . Ann. Scient. Ec. Norm. Sup., 18, 1985 , pp. 389-419. Numdam | MR 87g:17006a | Zbl 0589.22014 · Zbl 0589.22014
[18] G. KDMPF , Linear systems on homogeneous spaces , Ann. Math., 103, 1980 , pp. 557-591. MR 53 #13229 | Zbl 0327.14016 · Zbl 0327.14016 · doi:10.2307/1970952
[19] B. KOSTANT , Groups over \Bbb Z . Proc. Symp. Pure Math. A.M.S., 9, 1966 , pp. 90-98. MR 34 #7528 | Zbl 0199.06903 · Zbl 0199.06903
[20] S. KUMAR , Proof of the Parthasaraty-Ranga-Rao-Varadarajan conjecture . Invent. Math., 93, 1988 , pp. 117-130. MR 89j:17009 | Zbl 0668.17008 · Zbl 0668.17008 · doi:10.1007/BF01393689
[21] V. LAKSHMIBAI , C. S. SESHADRI , Geometry of G/P-5 . J. Alg., 100, 1986 , pp. 462-557. MR 87k:14059 | Zbl 0618.14026 · Zbl 0618.14026 · doi:10.1016/0021-8693(86)90089-X
[22] P. LITTELMANN , A generalization of the Littlewood-Richardson rule (to appear in J. Algebra). Zbl 0704.20033 · Zbl 0704.20033 · doi:10.1016/0021-8693(90)90086-4
[23] O. MATHIEU , Construction d’un groupe de Kac-Moody et applications , Comp. Math., 69, 1989 , pp. 37-60. Numdam | MR 90f:17012 | Zbl 0678.17012 · Zbl 0678.17012
[24] O. MATHIEU , Filtrations of B-modules . Duke Math. J., 59-2, 1989 , pp. 421-442. Article | MR 90k:14056 | Zbl 0721.20028 · Zbl 0721.20028 · doi:10.1215/S0012-7094-89-05919-X
[25] O. MATHIEU , Frobenius action on the B-cohomology , Proc. of ”Infinite dimensional Lie algebras and groups” (Luminy 1988 ), ed. V. Kac, World Scientific, Adv. Ser. Math. Phys., 7, 1989 , pp. 39-51. MR 91g:14049 | Zbl 0764.17018 · Zbl 0764.17018
[26] O. MATHIEU , Filtrations of G-modules . C. R. Acad. Sci., Paris, 309, 1989 , pp. 273-276. MR 91b:20054 | Zbl 0705.20039 · Zbl 0705.20039
[27] M. MCGOVERN , On a theorem of Mathieu and Kumar (to appear).
[28] V. MEHTA , A. RAMANATHAN , Frobenius splitting and cohomology vanishing for Schubert varieties , Ann. Math., 122, 1985 , pp. 27-40. MR 86k:14038 | Zbl 0601.14043 · Zbl 0601.14043 · doi:10.2307/1971368
[29] V. MEHTA , A. RAMANATHAN , Schubert varieties in G/B \times G/B . Comp. Math., 67, 1988 , pp. 355-358. Numdam | MR 89k:14090 | Zbl 0665.14020 · Zbl 0665.14020
[30] P. POLO , Variétés de Schubert et excellentes filtrations . Proc. of ”Orbites unipotentes et représentations” (Paris 1987 ), Astérisque (to appear). · Zbl 0733.20021
[31] P. POLO , Un critère cohomologique d’existence d’une filtration de Schubert . C. R. Acad. Sci., Paris, 307, 1988 , pp. 791-794. MR 91b:20055 | Zbl 0669.20034 · Zbl 0669.20034
[32] P. POLO , Modules associés aux variétés de Schubert . C. R. Acad. Sci., Paris, 308, 1989 , pp. 37-60. MR 90f:20056 | Zbl 0678.20027 · Zbl 0678.20027
[33] S. RAMANAN , A. RAMANATHAN , Projective normality of flag varieties and Schubert varieties . Invent. Math., 79, 1985 , pp. 217-224. MR 86j:14051 | Zbl 0553.14023 · Zbl 0553.14023 · doi:10.1007/BF01388970
[34] A. RAMANATHAN , Schubert varieties are arithmetically Cohen-Macaulay . Invent. Math., 80, 1985 , pp. 283-294. MR 87d:14044 | Zbl 0541.14039 · Zbl 0541.14039 · doi:10.1007/BF01388607
[35] A. RAMANATHAN , Equations defining Schubert varieties and Frobenius splitting of diagonals . Publ. I.H.E.S., 65, 1987 , pp. 61-90. Numdam | MR 88k:14032 | Zbl 0634.14035 · Zbl 0634.14035 · doi:10.1007/BF02698935
[36] B. S. UPADHYADA , Filtrations with Weyl module quotients of the principal indecomposable modules for the group SL(2, q) . Comm. Alg., 7, 1979 , pp. 1469-1488. MR 80j:20045 | Zbl 0425.20005 · Zbl 0425.20005 · doi:10.1080/00927877908822413
[37] W. VAN DER KALLEN , Longest weight vectors and excellent filtrations (to appear). · Zbl 0642.20037 · doi:10.1007/BF01161991
[38] W. VAN DER KALLEN , Letter to the author (June 1988 ).
[39] WANG JIAN-PIAN , Sheaf cohomology on G/B and tensor products of Weyl modules , J. Alg., 77, 1982 , pp. 162-185. MR 84h:20032 | Zbl 0493.20023 · Zbl 0493.20023 · doi:10.1016/0021-8693(82)90284-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.