×

An improved absolute stability criterion for time-delay Lur’e systems and its frequency domain interpretation. (English) Zbl 1368.93197

Summary: This paper is concerned with absolute stability analysis for time-delay Lur’e systems with both sector- and slope-restricted nonlinearities. A new delay-dependent stability criterion is given by using a Lur’e-Postnikov functional. The additional slope restrictions on the nonlinearities play important roles in improving the absolute stability conditions. Numerical examples are presented to demonstrate the effectiveness of the proposed criterion. Moreover, a frequency domain interpretation for the criterion is presented as well.

MSC:

93B51 Design techniques (robust design, computer-aided design, etc.)
93C10 Nonlinear systems in control theory
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C15 Control/observation systems governed by ordinary differential equations
Full Text: DOI

References:

[1] P.A. Bilman, Lyapunov-Krasovskii functionals and frequency domain: delay-independent absolute stability criteria for delay systems. Int. J. Robust Nonlinear Control 11, 771-788 (2001) · Zbl 0992.93069 · doi:10.1002/rnc.576
[2] E. Bilotta, P. Pantano, F. Stranges, A gallery of Chua attractors: part I. Int. J. Bifurc. Chaos 17, 1-60 (2007) · Zbl 1116.37021 · doi:10.1142/S0218127407017161
[3] R.E. Blodgett, R.E. King, Absolute stability of a class of nonlinear systems containing distributed elements. J. Frankl. Inst. 284, 153-160 (1967) · Zbl 0213.15404 · doi:10.1016/0016-0032(67)90533-9
[4] S.P. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, 1994) · Zbl 0816.93004 · doi:10.1137/1.9781611970777
[5] J.W. Cao, S.M. Zhong, Y.Y. Hu, Delay-dependent condition for absolute stability of Lurie control systems with multiple time delays and nonlinearities. J. Math. Anal. Appl. 338, 497-504 (2008) · Zbl 1136.93028 · doi:10.1016/j.jmaa.2007.05.039
[6] S.J. Choi, S.M. Lee, S.C. Won, J.H. Park, Improved delay-dependent stability criteria for uncertain Lur’e systems with sector and slope restricted nonlinearities and time-varying delays. Appl. Math. Comput. 208, 520-530 (2009) · Zbl 1172.34047
[7] M.B.G. Cloosterman, N.V. De Wouw, W.P.M.H. Heemels, H. Nijmeijer, Stability of networked control systems with uncertain time-varying delays. IEEE Trans. Autom. Control 54, 1575-1580 (2009) · Zbl 1367.93459 · doi:10.1109/TAC.2009.2015543
[8] W.Y. Duan, C.X. Cai, Delay-range-dependent stability criteria for delayed discrete-time Lur’e system with sector-bounded nonlinearities. Nolinear Dyn. 78, 135-145 (2014) · Zbl 1314.93048 · doi:10.1007/s11071-014-1427-9
[9] V. Gazi, K.M. Passino, A class of attractions/repulsion functions for stable swarm aggregations. Int. J. Control 77, 1567-1579 (2004) · Zbl 1077.93502 · doi:10.1080/00207170412331330021
[10] W.M. Haddad, V. Kapila, Absolute stability criteria for multiple slope-restricted monotonic nonlinearities. IEEE Trans. Autom. Control 40, 361-365 (1995) · Zbl 0825.93618 · doi:10.1109/9.341811
[11] Q.L. Han, Absolute stability of time-delay systems with sector-bounded nonlinearity. Automatica 41, 2171-2176 (2005) · Zbl 1100.93519 · doi:10.1016/j.automatica.2005.08.005
[12] Y. He, M. Wu, J.H. She, G.P. Liu, Robust stability for delay Lur’e control systems with multiple nonlinearities. J. Comput. Appl. Math. 176, 371-380 (2005) · Zbl 1076.93036 · doi:10.1016/j.cam.2004.07.025
[13] T.S. Hu, B. Huang, Z.L. Lin, Absolute stability with a generalized sector condition. IEEE Trans. Autom. Control 49, 535-548 (2004) · Zbl 1365.93467 · doi:10.1109/TAC.2004.825657
[14] H. Huang, G. Feng, J.D. Cao, Exponential synchronization of chaotic Lur’e systems with delayed feedback control. Nonlinear Dyn. 57, 441-453 (2009) · Zbl 1176.70034 · doi:10.1007/s11071-008-9454-z
[15] D.H. Ji, D.W. Lee, J.H. Koo, S.C. Won, S.M. Lee, J.H. Park, Synchronization of neutral complex dynamical networks with coupling time-varying delays. Nonlinear Dyn. 65, 349-358 (2011) · Zbl 1280.93005 · doi:10.1007/s11071-010-9896-y
[16] R. Josselson, G.V.S. Raju, Absolute stability of control systems with many sector and slope-restricted nonlinearities. Int. J. Control 19, 609-614 (1974) · Zbl 0286.93031 · doi:10.1080/00207177408932656
[17] H.K. Khalil, J.W. Grizzle, Nonlinear Systems (Prentice-Hall, Englewood Cliffs, 2002) · Zbl 1003.34002
[18] O.M. Kwon, J.W. Son, S.M. Lee, Constrained predictive synchronization of discrete-time chaotic Lur’e systems with time-varying delayed feedback control. Nonlinear Dyn. 72, 129-140 (2013) · Zbl 1268.39023 · doi:10.1007/s11071-012-0697-3
[19] S.M. Lee, O.M. Kwon, J.H. Park, Delay-independent absolute stability for time-delay Lur’e systems with sector and slope restricted nonlinearities. Phys. Lett. A 372, 4010-4015 (2008) · Zbl 1220.93063 · doi:10.1016/j.physleta.2008.03.012
[20] S.M. Lee, S.J. Choi, D.H. Ji, J.H. Park, S.C. Won, Synchronization for chaotic Lur’e systems with sector-restricted nonlinearities via delayed feedback control. Nonlinear Dyn. 59, 277-288 (2010) · Zbl 1183.70073 · doi:10.1007/s11071-009-9537-5
[21] S.M. Lee, J.H. Park, Delay-dependent criteria for absolute stability of uncertain time-delayed Lur’e dynamical systems. J. Frankl. Inst. 347, 146-153 (2010) · Zbl 1298.93256 · doi:10.1016/j.jfranklin.2009.08.002
[22] G.A. Leonov, D.V. Ponomarenko, V.B. Smirnova, Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications (World Scientific, Singapore, 1996) · Zbl 0954.65091 · doi:10.1142/2638
[23] H.Y. Li, Y.B. Gao, P. Shi, H.K. Lam, Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Trans. Autom. Control. (2015). doi:10.1109/TAC.2015.2503566 · Zbl 1359.93065
[24] H.Y. Li, Y.N. Pan, P. Shi, Y. Shi, Switched fuzzy output feedback control and its application to mass-spring-damping system. IEEE Trans. Fuzzy Syst. (2015). doi:10.1109/TFUZZ.2015.2505332 · Zbl 1183.70073
[25] H.Y. Li, J.H. Wang, P. Shi, Output-feedback based sliding mode control for fuzzy systems with actuator saturation. IEEE Trans. Fuzzy Syst. (2015). doi:10.1109/TFUZZ.2015.2513085 · Zbl 1314.93048
[26] H.Y. Li, C.W. Wu, S. Yin, H.K. Lam, Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise variables. IEEE Trans. Fuzzy Syst. (2015). doi:10.1109/TFUZZ.2015.2505331
[27] C.G. Li, L.N. Chen, K. Aihara, Synchronization of coupled nonidentical genetic oscillators. Phys. Biol. 3, 37-44 (2006) · doi:10.1088/1478-3975/3/1/004
[28] H.Y. Li, H.J. Gao, P. Shi, X.D. Zhao, Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50, 1825-1834 (2014) · Zbl 1296.93200 · doi:10.1016/j.automatica.2014.04.006
[29] X.X. Liao, P. Yu, Absolute Stability of Nonlinear Control Systems (Springer, New York, 2008) · Zbl 1151.93002 · doi:10.1007/978-1-4020-8482-9
[30] X. Liu, J.J. Du, Q. Gao, Stability analysis of nonlinear systems with slope restricted nonlinearities. The Scientific World Journal 2014, 278305 (2014). doi:10.1155/2014/278305 · Zbl 0213.15404
[31] X. Liu, J.Z. Wang, Z.D. Duan, L. Huang, New absolute stability criteria for time-delay Lur’e systems with sector-bounded nonlinearity. Int. J. Robust Nonlinear Control 20, 659-672 (2010) · Zbl 1298.93265
[32] Y.J. Liu, S.M. Lee, O.M. Kwon, J.H. Park, Robust delay-dependent stability criteria for time-varying delayed Lur’e systems of neutral type. Circuits Syst. Signal Process. 34, 1481-1497 (2015) · Zbl 1341.93061 · doi:10.1007/s00034-014-9909-z
[33] M. Margaliot, C. Yfoulis, Absolute stability of third-order systems: a numerical algorithm. Automatica 42, 1705-1711 (2006) · Zbl 1114.93077 · doi:10.1016/j.automatica.2006.04.025
[34] P.G. Park, Stability criteria of sector- and slope-restricted Lur’e systems. IEEE Trans. Autom. Control 47, 308-313 (2002) · Zbl 1364.93615 · doi:10.1109/9.983366
[35] J.B. Qiu, G. Feng, H.J. Gao, Static-output-feedback \[H_{\infty }H\]∞ control of continuous-time T-S fuzzy affine systems via piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 21, 245-261 (2013) · doi:10.1109/TFUZZ.2012.2210555
[36] J.B. Qiu, H. Tian, Q.G. Lu, H.J. Gao, Nonsynchronized robust filtering design for continuous-time T-S fuzzy affine dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Cybern. 43, 1755-1766 (2013) · doi:10.1109/TSMCB.2012.2229389
[37] J.B. Qiu, Y.L. Wei, H.R. Karimi, New approach to delay-dependent \[H_{\infty }H\]∞ control for continuous-time Markovian jump systems with time-varying delay and deficient transition descriptions. J. Frankl. Inst. 352, 189-215 (2015) · Zbl 1307.93444 · doi:10.1016/j.jfranklin.2014.10.022
[38] J.B. Qiu, S.X. Ding, H.J. Gao, S. Yin, Fuzzy-model-based reliable static output feedback \[H_{\infty }H\]∞ control of nonlinear hyperbolic PDE systems. IEEE Trans. Fuzzy Syst. 24, 388-400 (2016) · doi:10.1109/TFUZZ.2015.2457934
[39] F. Qiu, Q.X. Zhang, Absolute stability analysis of Lurie control system with multiple delays: an integral-equality approach. Nonlinear Anal. Real World Appl. 12, 1475-1484 (2011) · Zbl 1217.93152 · doi:10.1016/j.nonrwa.2010.10.007
[40] A. Rantzer, On the Kalman-Yakubovich-Popov lemma. Syst. Control Lett. 28, 7-10 (1996) · Zbl 0866.93052 · doi:10.1016/0167-6911(95)00063-1
[41] V. Singh, A stability inequality for nonlinear feedback systems with slope-restricted nonlinearity. IEEE Trans. Autom. Control 29, 743-744 (1984) · Zbl 0541.93058 · doi:10.1109/TAC.1984.1103622
[42] T. Wang, H.J. Gao, J.B. Qiu, A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neural Netw. Learn. Syst. 27, 416-425 (2016) · doi:10.1109/TNNLS.2015.2411671
[43] V.A. Yakubovich, The method of matrix inequalities in the stability theory of nonlinear control systems II: absolute stability in a class of nonlinearities with a condition on the derivative. Autom. Remote Control 26, 577-590 (1965) · Zbl 0158.09904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.