×

Delay-range-dependent stability criteria for delayed discrete-time Lur’e system with sector-bounded nonlinearities. (English) Zbl 1314.93048

Summary: This paper is devoted to the absolute and robust stability for uncertain discrete-time Lur’e systems with interval time-varying delays and sector-bounded nonlinearities. Both, the cases with time-invariant and time-varying nonlinearities, are considered. By dividing the variation interval of the time delays into some subintervals, some new delay-range-dependent robust stability criteria are derived in the form of Linear Matrix Inequalities (LMIs) via a modified Lyapunov-Krasovskii Functional (LKF) approach. The criteria are less conservative than some existing results. Finally, some numerical examples are presented to show the effectiveness of the proposed approach.

MSC:

93D09 Robust stability
90C25 Convex programming
93C10 Nonlinear systems in control theory
93B52 Feedback control
Full Text: DOI

References:

[1] Popov, V.: Hyperstability of Control Systems. Springer, New York (1973) · Zbl 0276.93033 · doi:10.1007/978-3-642-65654-5
[2] Liao, X.: Absolute Stability of Nonlinear Control Systems. Science Press, Beijing (1993) · Zbl 0817.93002 · doi:10.1007/978-94-017-0608-7
[3] Khalil, H.: Nonlinear Systems. Prentice-Hall, Upper Saddle River (1996)
[4] Han, Q.: A delay decomposition approach to stability and control of linear time-delay system Part I: Stability, Proceedings of World Conf. I. Contol Autom., pp. 284-288 (2008) · Zbl 1268.39023
[5] Ding, K., Han, Q.: Effects of coupling delays on synchronization in Lur’e complex dynamical networks. Int. J. Bifurcat. Chaos 20(11), 3565-3584 (2010) · Zbl 1208.34082 · doi:10.1142/S0218127410027908
[6] Tian, E., Yue, D., Gu, Z.: Robust control for nonlinear systems over network: a piecewise analysis method. Fuzzy Sets Syst. 161(21), 2731-2745 (2010) · Zbl 1206.93037 · doi:10.1016/j.fss.2010.03.008
[7] Tian, E., Yue, D., Peng, C.: Delay-fraction-dependent robust control for linear systems with delay in state or input and its applications. Int. J. Syst. Sci. 43(5), 820-833 (2012) · Zbl 1307.93147 · doi:10.1080/00207721.2010.528177
[8] Yue, D., Li, H.: Synchronization stability of continuous/discrete complex dynamical networks with interval time-varying delays. Neurocomputing 73(4-6), 809-819 (2010) · doi:10.1016/j.neucom.2009.10.008
[9] Yue, D., Tian, E., Zhang, Y.: A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay. Int. J. Robust. Nonlinear Control 19(20), 1493-1518 (2009) · Zbl 1298.93259 · doi:10.1002/rnc.1399
[10] Sun, X., Liu, G., Rees, D., Wang, W.: Delay-dependent stability for discrete systems with large delay sequence based on switching techniques. Automatica 44(11), 2902-2908 (2008) · Zbl 1152.93499 · doi:10.1016/j.automatica.2008.04.006
[11] Sun, X., Wang, W.: Integral input-to-state stability for hybrid delayed systems with unstable continuous dynamics. Automatica 48(9), 2359-2364 (2012) · Zbl 1257.93089 · doi:10.1016/j.automatica.2012.06.056
[12] Zhang, B., Xu, S., Zou, Y.: Improved stability criterion and its applications in delayed controller design for discrete-time systems. Automatica 44(11), 2963-2967 (2008) · Zbl 1152.93453 · doi:10.1016/j.automatica.2008.04.017
[13] Zhang, W., Wang, J., Liang, Y., Han, Z.: Improved delay-range-dependent stability criterion for discrete-time systems with interval time-varying delay. J. Inf. Comput. Sci. 8(14), 3321-3328 (2011)
[14] Xu, S., Lam, J., Zhang, B., Zou, Y.: A new result on the delay-dependent stability of discrete systems with time-varying delays. Int. J. Robust. Nonlinear Control (2013). doi:10.1002/rnc.3006 · Zbl 1302.93168 · doi:10.1002/rnc.3006
[15] Kim, S.: Improved approach to robust stabilization of discrete-time T-S fuzzy systems with time-varying delays. IEEE Trans. Fuzzy Syst. 18(5), 1008-1015 (2010) · doi:10.1109/TFUZZ.2010.2062523
[16] Park, P., Ko, J., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1), 235-238 (2011) · Zbl 1209.93076 · doi:10.1016/j.automatica.2010.10.014
[17] Kwon, O., Park, M., Park, J., Lee, S., Cha, E.: Improved delay-dependent stability criteria for discrete-time systems with time-varying delays. Circuits Syst Signal Process 32(4), 1949-1962 (2013) · Zbl 1314.60139 · doi:10.1007/s00034-012-9543-6
[18] Ramakrishnan, K., Ray, G.: Robust stability criteria for a class of uncertain discrete-time systems with time-varying delay. Appl. Math. Model. 37(3), 1468-1479 (2013) · Zbl 1351.93111 · doi:10.1016/j.apm.2012.03.045
[19] Liu, J., Zhang, J.: Note on stability of discrete-time time-varying delay systems. IET Control Theory Appl. 6(2), 335-339 (2012)
[20] Hao, F.: Absolute stability of uncertain discrete-time Lur’e systems and maximum admissible perturbed bounds. J. Frankl. Inst. 347(8), 1511-1525 (2010) · Zbl 1202.93102 · doi:10.1016/j.jfranklin.2010.07.003
[21] Han, Q., Xue, A., Liu, S., Yu, X.: Robust absolute stability criteria for uncertain Lur’e systems of neutral-type. Int. J. Robust. Nonlinear Control 18(3), 278-295 (2008) · Zbl 1284.93178 · doi:10.1002/rnc.1219
[22] Yin, C., Zhong, S., Chen, W.: On delay-dependent robust stability of a class of uncertain mixed neutral and Lur’e dynamical systems with interval time-varying delays. J. Frankl. Inst. 347(6), 1623-1642 (2010) · Zbl 1202.93105 · doi:10.1016/j.jfranklin.2010.06.011
[23] Wang, Y., Zhang, X., He, Y.: Improved delay-dependent robust stability criteria for a class of uncertain mixed neutral and Lur’e dynamical systems with interval time-varying delays and Sector bounded nonlinearity. Nonlinear Anal. Real World Appl. 13(11), 2188-2194 (2012) · Zbl 1254.93129 · doi:10.1016/j.nonrwa.2012.01.014
[24] Duan, W., Cai, C., Zou, Y.: Synchronization for Lur’e type complex dynamical networks with time-varying delay based on linear feedback controller. In: Proceedings of the 10th World Congress on Intelligent Control and Automation, pp. 1389-1394 (2012) · Zbl 1286.93011
[25] Duan, W., Du, B., You, J., Zou, Y.: Synchronization criteria for neutral complex dynamic networks with interval time-varying coupling delays. Asian J. Control 15(6), 1385-1396 (2013) · Zbl 1286.93011
[26] Duan, W., Du, B., You, J., Zou, Y.: Improved robust stability criteria for a class of Lur’e systems with interval time-varying delays and sector-bounded nonlinearity. Int. J. Syst. Sci. (2013). doi:10.1080/00207721.2013.822123 · Zbl 1312.93079
[27] Ramakrishnan, K., Ray, G.: An improved delay-dependent stability criterion for a class of Lur’e systems of neutral-type. J. Dyn. Syst. Meas. Control. 134(1), ArtNo. 011008 (2012) · Zbl 1307.93147
[28] Huang, H., Feng, G., Cao, J.: Exponential synchronization of chaotic Lur’e systems with delayed feedback control. Nonlinear Dyn. 57(3), 441-453 (2009) · Zbl 1176.70034 · doi:10.1007/s11071-008-9454-z
[29] Kwon, O., Son, J., Lee, S.: Constrained predictive synchronization of discrete-time chaotic Lur’e systems with time-varying delayed feedback control. Nonlinear Dyn. 72(1-2), 129-140 (2013) · Zbl 1268.39023 · doi:10.1007/s11071-012-0697-3
[30] Ramakrishnan, K., Ray, G.: Delay-dependent stability criteria for uncertain discrete-time Lur’e systems with sector-bounded nonlinearity. In: Proceedings of the International Conference on Mathematical Modelling and Scientific Computation, pp. 210-219 (2012) · Zbl 1494.93083
[31] Zhu, X., Yang, G.: Jensen inequality approach to stability analysis of discrete-time systems with time-varying delay. In: Proceedings of American Control Conf., pp. 1644-1649 (2008)
[32] Huang, H., Feng, G.: Improved approach to delay-dependent stability analysis of discrete-time systems with time-varying delay. IET Cont. Theory Appl. 4(10), 2152-2159 (2010) · doi:10.1049/iet-cta.2009.0225
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.