×

Dynamo action between two rotating discs. (English) Zbl 1491.76093

Summary: Dynamo action is considered in the region between two differentially rotating infinite discs. The boundaries may be insulating, perfectly conducting or ferromagnetic. In the absence of a magnetic field, various well-known self-similar flows arise, generalising that of von Kármán. Magnetic field instabilities with the same similarity structure are sought. The kinematic eigenvalue problem is found to have growing modes for \(Re_m > R_c\simeq 100\). The growth rate is real for the perfectly conducting and ferromagnetic cases, but may be complex for insulating boundaries. As \(Re_m\to\infty\) it is shown that the dynamo can be fast or slow, depending on the flow structure. In the slow case, the growth rate is governed by a magnetic boundary layer on one of the discs. The growing field saturates in a solution to the nonlinear dynamo problem. The bifurcation is found to be subcritical and nonlinear dynamos are found for \(Re_m\gtrsim0.7R_c\). Finally, the flux of magnetic energy to large \(r\) is examined, to determine which solutions might generalise to dynamos between finite discs. It is found that the fast dynamos tend to have inward energy flux, and so are unlikely to be realised in practice. Slow dynamos with outward flux are found. It is suggested that the average rotation rate should be non-zero in practice.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76U05 General theory of rotating fluids
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
86A25 Geo-electricity and geomagnetism

Software:

bvp4c; MATSLISE

References:

[1] Batchelor, G. K., Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow, Quart. J. Mech. Appl. Math., 4, 29-41 (1951) · Zbl 0042.43101
[2] Berhanu, M.; Verhille, G.; Boisson, J.; Gallet, B.; Gissinger, C.; Fauve, S.; Mordant, N.; Pétrélis, F.; Bourgoin, M.; Odier, P.; Pinton, J. F.; Plihon, N.; Aumaître, S.; Chiffaudel, A.; Daviaud, F.; Dubrulle, B.; Pirat, C., Dynamo regimes and transitions in the VKS experiment, Eur. Phys. J. B, 77, 459-468 (2010)
[3] Cowling, T. G., The magnetic field of sunspots, MNRAS, 94, 39-48 (1933) · Zbl 0008.28002
[4] Gailitis, A.; Lielausis, O.; Platacis, E.; Dement’ev, S.; Cifersons, A.; Gerbeth, G.; Gundrum, T.; Stefani, F.; Christen, M.; Will, G., Magnetic field saturation in the Riga dynamo experiment, Phys. Rev. Lett., 86, 3024-3027 (2001)
[5] Hewitt, R. E.; Al-Azhari, M., Non-axisymmetric self-similar flow between two rotating disks, J. Eng. Math., 63, 259-277 (2009) · Zbl 1160.76051
[6] Ledoux, V.; Daele, M. V.; Berghe, G. V., MATSLISE: A MATLAB package for the numerical solution of Sturm-Liouville and Schrödinger equations, ACM Trans. Math. Softw. (TOMS), 31, 532-554 (2005) · Zbl 1136.65327
[7] Monchaux, R.; Berhanu, M.; Aumaître, S.; Chiffaudel, A.; Daviaud, F.; Dubrulle, B.; Ravelet, F.; Fauve, S.; Mordant, N.; Pétrélis, F.; Bourgoin, M.; Odier, P.; Pinton, J. F.; Plihon, N.; Volk, R., The von Kármán sodium experiment: turbulent dynamical dynamos, Phys. Fluids, 21 (2009) · Zbl 1183.76009
[8] Nore, C.; Castanon Quiroz, D.; Cappanera, L.; Guermond, J. L., Numerical simulation of the von Kármán sodium dynamo experiment, J. Fluid Mech., 854, 164-195 (2018) · Zbl 1415.76761
[9] Roberts, P. H.; Soward, A. M., Dynamo theory, Annu. Rev. Fluid Mech., 24, 459-512 (1992) · Zbl 0756.76090
[10] Shampine, L. F.; Gladwell, I.; Thompson, S., Solving ODEs with MATLAB (2003), Cambridge: Cambridge University Press · Zbl 1079.65144
[11] Stewartson, K., On the flow between two rotating coaxial disks, Math. Proc. Cambridge Philos. Soc., 49, 333-341 (1953) · Zbl 0051.41904
[12] Stieglitz, R.; Müller, U., Experimental demonstration of a homogeneous two-scale dynamo, Phys. Fluids, 13, 561-564 (2001) · Zbl 1184.76529
[13] Vaz, R. H.; Boshier, F. A.T.; Mestel, A. J., Dynamos in an annulus with fields linear in the axial coordinate, Geophys. Astrophys. Fluid Dyn., 112, 222-234 (2018) · Zbl 1499.86022
[14] von Kármán, T., Über laminare und turbulente Reibung, Z. Angew. Math. Mech., 1, 233-252 (1921) · JFM 48.0968.01
[15] Zandbergen, P. J.; Dijkstra, D., von Kármán swirling flows, Ann. Rev. Fluid Mech., 19, 465-491 (1987) · Zbl 0629.76026
[16] Zimmerman, D. S.; Triana, S. A.; Nataf, H. C.; Northrup, D. P., A turbulent, high magnetic Reynolds number experimental model of Earth’s core, J. Geophys. Res. Solid Earth, 119, 4538-4557 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.