×

Frequency response investigations of multi-input multi-output nonlinear systems using automated symbolic harmonic balance method. (English) Zbl 1204.93081

Summary: The frequency response characteristics of MIMO systems are investigated by using harmonic balance equations. For this purpose, the algorithm for the automatic generation of harmonic balance equations is extended to include MIMO systems. Then the method is applied to obtain the frequency response of an example model having two-input and two-output. Both the frequency response and its harmonics are validated by numerical solutions. The effect of input amplitude variations and phase differences of inputs on the frequency response are investigated. Direct computation of the resonance parameters depending on input amplitude and phase variations are also obtained for the example system.

MSC:

93C80 Frequency-response methods in control theory
70K28 Parametric resonances for nonlinear problems in mechanics
Full Text: DOI

References:

[1] Marmarelis, P.K., Naka, K.I.: Identification of multi-input biological systems. IEEE Trans. Biomed. Eng. 21, 88–101 (1974) · doi:10.1109/TBME.1974.324293
[2] Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, New York (1984) · Zbl 0558.76051
[3] Savi, M.A., Pacheco, P.M.C.L.: Chaos in a two-degree of freedom Duffing oscillator. J. Braz. Soc. Mech. Sci. 24(2), 115–121 (2002) · doi:10.1590/S0100-73862002000200006
[4] Lifshitz, R., Cross, M.C.: Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays. Phys. Rev. 67, 134–302 (2003)
[5] Vincent, U.E.: Measure synchronization in coupled Duffing–Hamiltonian systems. New J. Phys. 7(209), 209–216 (2005) · doi:10.1088/1367-2630/7/1/209
[6] Lang, Z., Billings, S.A.: Evaluation of output frequency responses of nonlinear systems under multiple inputs. IEEE Trans. Circuits Syst. II: Anal. Dig. Signal Process. 47(1), 28–38 (2000) · Zbl 0980.93050 · doi:10.1109/82.818892
[7] Swain, A.K., Billings, S.A.: Generalized frequency response function matrix for MIMO non-linear systems. Int. J. Control 74(8), 829–844 (2001) · Zbl 1038.93066 · doi:10.1080/00207170010030144
[8] Li, L.M., Billings, S.A.: Generalized frequency response functions and output response synthesis for MIMO non-linear systems. Int. J. Control 79(1), 53–62 (2006) · Zbl 1122.93058 · doi:10.1080/00207170500428794
[9] Peng, Z.K., Lang, Z., Billings, S.A.: Resonances and resonant frequencies for a class of nonlinear systems. J. Sound Vib. 300, 993–1014 (2007) · doi:10.1016/j.jsv.2006.09.012
[10] Linkens, D.A.: Analytical solutions of large number of mutually coupled nearly sinusoidal oscillators. IEEE Trans. Circuits Syst. 21(2), 294–300 (1974) · doi:10.1109/TCS.1974.1083848
[11] Masiani, R., Capecchi, D., Vestroni, F.: Resonant and coupled response of hysteretic two-degree-of-freedom systems using harmonic balance method. Int. J. Non-Linear Mech. 37, 1421–1434 (2002) · Zbl 1346.74148 · doi:10.1016/S0020-7462(02)00023-9
[12] Yamapi, R., Orou, J.B.C.: Harmonic oscillations, stability and chaos control in a nonlinear electromechanical system. J. Sound Vib. 259(5), 1253–1264 (2003) · Zbl 1237.34070 · doi:10.1006/jsvi.2002.5289
[13] Cook, P.A.: Nonlinear dynamical systems. In: Grimble, M.J. (ed.) Prentice Hall International Series in Systems and Control Engineering. Prentice Hall, New York (1994)
[14] Peyton Jones, J.C., Çankaya, \.I.: A note on the computation of maximum roll amplitudes in regular beam seas. J. Ship Res. 41(3), 224–229 (1997)
[15] Peyton Jones, J.C.: Automatic computation of harmonic balance equations for non-linear systems. Int. J. Control 76(4), 355–365 (2003) · Zbl 1048.93041 · doi:10.1080/0020717031000079436
[16] Peyton Jones, J.C., Çankaya, \.I.: Polyharmonic balance analysis of nonlinear ship roll response. Nonlinear Dyn. 35(4), 123–146 (2004) · Zbl 1068.70527 · doi:10.1023/B:NODY.0000021033.27607.fa
[17] Peyton Jones, J.C.: Practical frequency response analysis of non-linear time-delayed differential or difference equation models. Int. J. Control 78(1), 65–79 (2005) · Zbl 1077.93038 · doi:10.1080/00207170412331330904
[18] Dunne, J.F., Hayward, P.: A split-frequency harmonic balance method for non-linear oscillators with multi-harmonic forcing. J. Sound Vib. 295, 939–963 (2006) · Zbl 1243.70023 · doi:10.1016/j.jsv.2006.01.050
[19] Akgün, D., Çankaya, \.I., Peyton Jones, J.C.: A symbolic algorithm for the automatic computation of multitone-input harmonic balance equations for nonlinear systems. Nonlinear Dyn. 56(1–2), 179–191 (2009) · Zbl 1170.70002 · doi:10.1007/s11071-008-9390-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.