×

A symbolic algorithm for the automatic computation of multitone-input harmonic balance equations for nonlinear systems. (English) Zbl 1170.70002

Summary: We develop a symbolic algorithm for the automatic generation of harmonic balance equations for multitone input for a class of nonlinear differential systems with polynomial nonlinearities. Generalized expressions are derived for the construction of balance equations for a defined multitone signal form. Procedures are described for determining combinations for a given output frequency from the desired set obtained from box truncated spectra and their permutations to automate symbolic algorithm. An application of method is demonstrated using the well-known Duffing-van der Pol equation. Then the obtained analytical results are compared with numerical simulations to show the accuracy of the approach. We also investigate the computation times for both the numerical solutions of equations versus the number of frequency components and the symbolic generation of the equations versus the power of nonlinearity.

MSC:

70-08 Computational methods for problems pertaining to mechanics of particles and systems
70K40 Forced motions for nonlinear problems in mechanics
68W30 Symbolic computation and algebraic computation
Full Text: DOI

References:

[1] Volterra, V.: Theory of Functionals and of Integral and Integro Differential Equations. Dover, New York (1959) · Zbl 0086.10402
[2] Schetzen, M.: The Volterra and Wiener Theories of Nonlinear Systems. Wiley, New York (1980) · Zbl 0501.93002
[3] Lozowicki, A.: On application of the describing function method for optimization of feedback control systems. Int. J. Robust Nonlinear Control. 7, 911–933 (1997). doi: 10.1002/(SICI)1099-1239(199710)7:10<911::AID-RNC250>3.0.CO;2-3 · Zbl 0905.93020 · doi:10.1002/(SICI)1099-1239(199710)7:10<911::AID-RNC250>3.0.CO;2-3
[4] Taylor, J.A.: Robust nonlinear control based on describing functions methods. In: ASME IMECE. Dynamic Systems and Control Division, vol. 64. Anaheim (1998)
[5] Kahlil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall International, New York (2001)
[6] Cook, P.A.: Nonlinear dynamical systems. In: Grimble, M.J. (ed.) Prentice Hall International Series in Systems and Control Engineering. Prentice Hall International, New York (1994)
[7] Peyton Jones, J.C., Zhuang, M., Çankaya, \.I.: Symbolic computation of harmonic balance equations. Int. J. Control 68(3), 449–460 (1997). doi: 10.1080/002071797223460 · Zbl 0887.93020 · doi:10.1080/002071797223460
[8] Peyton Jones, J.C.: Automatic computation of harmonic balance equations for non-linear systems. Int. J. Control 76(4), 355–365 (2003). doi: 10.1080/0020717031000079436 · Zbl 1048.93041 · doi:10.1080/0020717031000079436
[9] Peyton Jones, J.C., Çankaya, \.I.: Polyharmonic balance analysis of nonlinear ship roll response. Nonlinear Dyn. 35, 123–146 (2004). doi: 10.1023/B:NODY.0000021033.27607.fa · Zbl 1068.70527 · doi:10.1023/B:NODY.0000021033.27607.fa
[10] Peyton Jones, J.C.: Practical frequency response analysis of non-linear time-delayed differential or difference equation models. Int. J. Control 78(1), 65–79 (2005). doi: 10.1080/00207170412331330904 · Zbl 1077.93038 · doi:10.1080/00207170412331330904
[11] Dunne, J.F., Hayward, P.: A split-frequency harmonic balance method for non-linear oscillators with multi-harmonic forcing. J. Sound Vib. 295, 939–963 (2006). doi: 10.1016/j.jsv.2006.01.050 · Zbl 1243.70023 · doi:10.1016/j.jsv.2006.01.050
[12] Yang, S., Nayfeh, A.H., Mook, D.T.: Combination resonances in the response of the Duffing oscillator to a three-frequency excitation. Acta Mech. 131, 235–245 (1998). doi: 10.1007/BF01177227 · Zbl 0938.70017 · doi:10.1007/BF01177227
[13] Pusenjak, R.R., Oblak, M.M.: Incremental harmonic balance method with multiple time variables for dynamical systems with cubic non-linearities. Int. J. Numer. Methods Eng. 59, 255–292 (2004). doi: 10.1002/nme.875 · Zbl 1047.70003 · doi:10.1002/nme.875
[14] Lou, J.-J., He, Q.-W., Zhu, S.-J.: Chaos in the softening duffing system under multi-frequency periodic forces. Appl. Math. Mech. 25(12) (2004) · Zbl 1142.70330
[15] Kim, C.H., Lee, C.-W., Perkins, N.C.: Nonlinear vibration of sheet metal plates under interacting parametric and external excitation during manufacturing. J. Vib. Acoust. 127, 36–43 (2005). doi: 10.1115/1.1857924 · doi:10.1115/1.1857924
[16] Kundert, K.S., White, J.K., Sangiovanni-Vincentelli, A.: Steady-State Methods for Simulating Analog and Microwave Circuits. Kluwer Academic, Boston (1990) · Zbl 0723.94009
[17] Dennis, J., Schnebel, R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hall, Englewood Cliffs (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.