×

Point spread function estimation in X-ray imaging with partially collapsed Gibbs sampling. (English) Zbl 1387.65005

Summary: The point spread function (PSF) of a translation invariant imaging system is its impulse response, which cannot always be measured directly. This is the case in high-energy X-ray radiography, and the PSF must be estimated from images of calibration objects indirectly related to the impulse response. When the PSF is assumed to have radial symmetry, it can be estimated from an image of an opaque straight edge. We use a nonparametric Bayesian approach, where the prior probability density for the PSF is modeled as a Gaussian Markov random field and radial symmetry is incorporated in a novel way. Markov chain Monte Carlo posterior estimation is carried out by adapting a recently developed improvement to the Gibbs sampling algorithm, referred to as partially collapsed Gibbs sampling. Moreover, the algorithm we present is proven to satisfy invariance with respect to the target density. Finally, we demonstrate the efficacy of these methods on radiographic data obtained from a high-energy X-ray diagnostic system at the U. S. Department of Energy’s Nevada National Security Site.

MSC:

65C05 Monte Carlo methods
65C40 Numerical analysis or methods applied to Markov chains
68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
92C55 Biomedical imaging and signal processing

Software:

BayesDA; GMRFLib

References:

[1] F. Acosta, M. L. Huber, and G. L. Jones, {\it Markov Chain Monte Carlo with Linchpin Variables}, preprint, 2014; available online at .
[2] S. Agapiou, {\it Aspects of Bayesian Inverse Problems}, Ph.D. thesis, University of Warwick, Coventry, UK, 2013.
[3] S. Agapiou, J. M. Bardsley, O. Papaspiliopoulos, and A. M. Stuart, {\it Analysis of the Gibbs sampler for hierarchical inverse problems}, SIAM/ASA J. Uncertain. Quantif., 2 (2014), pp. 511-544, . · Zbl 1308.62097
[4] J. M. Bardsley, {\it MCMC-based image reconstruction with uncertainty quantification}, SIAM J. Sci. Comput., 34 (2012), pp. A1316-A1332, . · Zbl 1246.15022
[5] J. M. Bardsley and A. Luttman, {\it A Metropolis-Hastings method for linear inverse problems with Poisson likelihood and Gaussian prior}, Int. J. Uncertain. Quantif., 6 (2016), pp. 35-55. · Zbl 1498.94009
[6] D. Calvetti and E. Somersalo, {\it An Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing}, Surveys Tutorials Appl. Math. Sci. 2, Springer, New York, 2007. · Zbl 1137.65010
[7] M. J. Fowler, M. Howard, A. Luttman, S. E. Mitchell, and T. J. Webb, {\it A stochastic approach to quantifying the blur with uncertainty estimation for high-energy X-ray imaging systems}, Inverse Problems Sci. Engrg., 24 (2016), pp. 353-371.
[8] C. Fox and R. A. Norton, {\it Fast sampling in a linear-Gaussian inverse problem}, SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 1191-1218, . · Zbl 1398.94081
[9] D. Gamerman and H. F. Lopes, {\it Markov Chain Monte Carlo: Stochastic Simulations for Bayesian Inference}, Chapman & Hall/CRC, Boca Raton, FL, 2006. · Zbl 1137.62011
[10] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, {\it Bayesian Data Analysis}, Vol. 2, CRC Press, Boca Raton, FL, 2014. · Zbl 1279.62004
[11] J. Geweke, {\it Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments}, Vol. 196, Federal Reserve Bank of Minneapolis, Research Department, Minneapolis, MN, 1991.
[12] P. C. Hansen, J. G. Nagy, and D. P. O’Leary, {\it Deblurring Images: Matrices, Spectra, and Filtering}, Fund. Algorithms 3, SIAM, Philadelphia, 2006, . · Zbl 1112.68127
[13] P. C. Hansen, {\it Discrete Inverse Problems: Insight and Algorithms}, Fund. Algorithms 7, SIAM, Philadelphia, 2010, . · Zbl 1197.65054
[14] D. Higdon, {\it A primer on space-time modeling from a Bayesian perspective}, in Statistical Methods for Spatio-Temporal Systems, Monogr. Statist. Appl. Probab. 107, Taylor & Francis, Philadelphia, 2006, pp. 217-279. · Zbl 1121.62081
[15] M. Howard, M. Fowler, A. Luttman, S. E. Mitchell, and M. C. Hock, {\it Bayesian Abel inversion in quantitative X-ray radiography}, SIAM J. Sci. Comput., 38 (2016), pp. B396-B413, . · Zbl 1339.92036
[16] M. Howard, A. Luttman, and M. Fowler, {\it Sampling-based uncertainty quantification in deconvolution of X-ray radiographs}, J. Comput. Appl. Math., 270 (2014), pp. 43-51. · Zbl 1321.65031
[17] A. Jain, {\it Fundamentals of Digital Image Processing}, Inform. Syst. Sci., Prentice-Hall, Englewood Cliffs, NJ, 1989. · Zbl 0744.68134
[18] K. Joyce, {\it Point Spread Function Estimation and Uncertainty Quantification}, Ph.D. thesis, University of Montana, Missoula, MT, 2016.
[19] J. Kaipio and E. Somersalo, {\it Statistical and Computational Methods for Inverse Problems}, Springer, New York, 2005. · Zbl 1068.65022
[20] G. Marsaglia and W. W. Tsang, {\it A simple method for generating gamma variables}, ACM Trans. Math. Software, 26 (2000), pp. 363-372. · Zbl 1365.65022
[21] K. W. Morton and D. F. Mayers, {\it Numerical Solutions of Partial Differential Equations: An Introduction}, Cambridge University Press, Cambridge, UK, 2005. · Zbl 1126.65077
[22] C. Robert and G. Casella, {\it Monte Carlo Statistical Methods}, Springer, New York, 2013. · Zbl 0935.62005
[23] M. C. Roggemann and B. Welsh, {\it Imaging through Turbulence}, CRC Press, Boca Raton, FL, 1996.
[24] H. Rue and L. Held, {\it Gaussian Markov Random Fields: Theory and Applications}, CRC Press, Boca Raton, FL, 2005. · Zbl 1093.60003
[25] A. Sokal, {\it Monte Carlo methods in statistical mechanics: Foundations and new algorithms}, in Functional Integration, Springer, New York, 1997, pp. 131-192. · Zbl 0890.65006
[26] A. M. Stuart, {\it Inverse problems: A Bayesian perspective}, Acta Numer., 19 (2010), pp. 451-559. · Zbl 1242.65142
[27] D. A. Van Dyk and X. Jiao, {\it Metropolis-Hastings within partially collapsed Gibbs samplers}, J. Comput. Graph. Statist., 24 (2015), pp. 301-327.
[28] D. A. Van Dyk and T. Park, {\it Partially collapsed Gibbs samplers: Theory and methods}, J. Amer. Statist. Assoc., 103 (2008), pp. 790-796. · Zbl 1471.62198
[29] C. R. Vogel, {\it Computational Methods for Inverse Problems}, Frontiers Appl. Math. 23, SIAM, Philadelphia, 2002, . · Zbl 1008.65103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.