×

Bayesian Abel inversion in quantitative X-ray radiography. (English) Zbl 1339.92036

Summary: A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and fluoresces in the visible spectrum in response to the absorbed photons, and a charge-coupled device camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the inverse Abel transform then gives the object’s volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type and scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density profile, the prior precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density profile, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.

MSC:

92C55 Biomedical imaging and signal processing
65C60 Computational problems in statistics (MSC2010)
65F22 Ill-posedness and regularization problems in numerical linear algebra
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

MCNP; PRMLT; BayesDA
Full Text: DOI

References:

[1] M.A. Abramson, T.J. Asaki, J.E. Dennis, K.R. O’Reilly, and R.L. Pingel, {\it Quantitative object reconstruction using Abel transform x-ray tomography and mixed variable optimization}, SIAM J. Imaging Sci., 1 (2008), pp. 322-342. · Zbl 1177.65200
[2] A.N. Parmar, D.D.E. Martin, M. Bavdaz, F. Favata, E. Kuulkers, G. Vacanti, U. Lammers, A. Peacock, and B.G. Taylor, {\it The low-energy concentrator spectrometer on-board the BeppoSAX x-ray astronomy satellite}, Astron. Astrophys. Suppl. Ser., 122 (1997), pp. 309-326.
[3] M. Deutsch, A. Notea and D. Pal, {\it Abel reconstruction of piecewise constant radial density profiles from x-ray radiographs}, Appl. Optics, 28 (1989), pp. 3183-3186.
[4] T.J. Asaki, P.R. Campbell, R. Chartrand, C.E. Powell, K.R. Vixie, and B.E. Wohlberg, {\it Abel inversion using total-variation regularization: Applications}, Inverse Probl. Sci. Eng., 14 (2006), pp. 873-885. · Zbl 1200.65115
[5] T.J. Asaki, R. Chartrand, K.R. Vixie, and B. Wohlberg, {\it Abel inversion using total-variation regularization}, Inverse Problems, 21 (2005), pp. 1895-1903. · Zbl 1094.65129
[6] S. Baker, K. Brown, A. Curtis, S.S. Lutz, R. Howe, R. Malone, S. Mitchell, J. Danielson, T. Haines, and K. Kwiatkowski, {\it Scintillator efficiency study with MeV x-rays}, Proc. SPIE, 9213 (2014), 92130H.
[7] J.M. Bardsley, {\it MCMC-based image reconstruction with uncertainty quantification}, SIAM J. Sci. Comput., 34 (2012), pp. A1316-A1332. · Zbl 1246.15022
[8] J.M. Bardsley, D. Calvetti, and E. Somersalo, {\it Hierarchical regularization for edge-preserving reconstruction of PET images}, Inverse Problems, 26 (2010), 035010. · Zbl 1188.41023
[9] J.M. Bardsley and C. Fox, {\it An MCMC method for uncertainty quantification in nonnegativity constrained inverse problems}, Inverse Probl. Sci. Eng., 20 (2012), pp. 477-498. · Zbl 1254.65009
[10] J.M. Bardsley and J. Goldes, {\it Regularization parameter selection methods for ill-posed poisson maximum likelihood estimation}, Inverse Problems, 25 (2009), 095005. · Zbl 1176.68225
[11] C.M. Bishop, {\it Pattern Recognition and Machine Learning}, Springer, New York, 2006. · Zbl 1107.68072
[12] R.N. Bracewell, {\it The Fourier Transform and Its Applications}, 2nd ed., McGraw-Hill, New York, 1978. · Zbl 0502.42001
[13] J.F. Briesmeister, {\it MCNP–A General Monte Carlo N-Particle Transport Code, Version 4C}, Tech. report LA-13709-M, Los Alamos National Laboratory, 2000.
[14] S. Brooks, A. Gelman, G.L. Jones, and X.-L. Meng, {\it Handbook of Markov Chain Monte Carlo}, Chapman and Hall/CRC, Boca Raton, FL, 2011. · Zbl 1218.65001
[15] D. Calvetti and E. Somersalo, {\it A Gaussian hypermodel to recover blocky objects}, Inverse Problems, 23 (2007), pp. 733-754. · Zbl 1112.62018
[16] D. Calvetti and E. Somersalo, {\it Introduction to Bayesian Scientific Computing}, Springer, New York, 2007. · Zbl 1137.65010
[17] D. Calvetti and E. Somersalo, {\it Hypermodels in the Bayesian imaging framework}, Inverse Problems, 24 (2008), 034013. · Zbl 1137.62062
[18] H. Caulfield, {\it Handbook of Optical Holography}, Academic Press, New York, 1979.
[19] G.C.Y. Chan and G.M. Hieftje, {\it Estimation of confidence intervals for radial emissivity and optimization of data treatment techniques in Abel inversion}, Spectrochimica Acta B, 61 (2006), pp. 31-41.
[20] I.J.D. Craig, {\it The inversion of Abel’s integral equation in astrophysical problems}, Astron. Astrophys., 79 (1979), pp. 121-127.
[21] H.W. Engl, M. Hanke, and G. Neubauer, {\it Regularization of Inverse Problems}, Springer, New York, 1996. · Zbl 0859.65054
[22] A. Gelman, J.B. Carlin, H.S. Stern, D. Dunson, A. Vehtari, and D.B. Rubin, {\it Bayesian Data Analysis}, 3rd ed., CRC Press, Boca Raton, FL, 2013. · Zbl 1279.62004
[23] G. Golub and C.F.V. Loan, {\it Matrix Computations}, 3rd ed., Johns Hopkins University Press, Baltimore, 1996. · Zbl 0865.65009
[24] K.D. Hahn, N. Bruner, M.D. Johnston, B.V. Oliver, T.J. Webb, and D.R. Welch, {\it Overview of self magnetically pinched-diode investigations on RITS}-6, IEEE Trans. Plasma Sci., 38 (2010), pp. 2652-2662.
[25] P.C. Hansen, {\it Rank-Deficient and Discrete Ill-Posed Problems}, SIAM, Philadelphia, 1997. · Zbl 0890.65037
[26] E. Haug and W. Nakel, {\it The Elementary Process of Bremsstrahlung}, Scientific Lecture Notes in Phys. 73, World Scientific, River Edge, NJ, 2004.
[27] D. Higdon, {\it A Primer on Space-Time Modeling from a Bayesian Perspective}, Tech. report LA-UR-05-3097, Los Alamos National Laboratory, 2005. · Zbl 1121.62081
[28] M. Howard, A. Luttman, and M. Fowler, {\it Sampling-based uncertainty quantification in deconvolution of X-ray radiographs}, J. Comput. Appl. Math., 270 (2014), pp. 43-51. · Zbl 1321.65031
[29] J. Kaipio and E. Somersalo, {\it Statistical and Computational Inverse Problems}, Springer, New York, 2005. · Zbl 1068.65022
[30] O. Knill, R. Dgani, and M. Vogel, {\it A new approach to Abel’s integral operator and its applications to stellar winds}, Astron. Astrophys., 274 (1993), pp. 1002-1008.
[31] S. Kumar and O. P. Singh, {\it Numerical inversion of the Abel integral using homotopy perturbation method}, Z. Naturforsch, 65a (2010), pp. 667-682.
[32] S. Ma, H. Gao, L. Wu, and G. Zhang, {\it Abel inversion using Legendre polynomials approximations}, J. Quant. Spectrosc. Radiat. Transfer, 109 (2008), pp. 1745-1757.
[33] G.W. McKinney, T.E. Booth, J.F. Briesmeister, L.J. Cox, R.A. Forster, J.S. Hendricks, R.D. Mosteller, R.E. Prael, and A. Sood, {\it MCNP applications for the 21st century}, in Proceedings of the 4th International Conference on Supercomputing in Nuclear Applications, 2000.
[34] K.R. O’Reilly, {\it Quantitative Object Reconstruction Using Abel Transform Tomography and Mixed Variable Optimization}, Ph.D. thesis, Air Force Institute of Technology, 2006.
[35] S. Portillo, B.V. Oliver, S.R. Cordova, N. Bruner, D. Ziska, and D. Rovang, {\it Demonstration of the Selfmagnetic-Pinch Diode as an X-ray Source for Ash Core-Punch Radiography}, Tech. report SAND2007-6324, Sandia National Laboratories, 2007.
[36] A.D. Poularikas, ed., {\it Transforms and Applications Handbook}, 3rd ed., CRC Press, Boca Raton, FL, 2010. · Zbl 1185.44001
[37] K. Roark, {\it LANL Fires a DAHRT}, DOE Pulse, (2009).
[38] L. Rudin and S. Osher, {\it Total variation based image restoration with free local constraints}, in Proceedings of ICIP-94, vol. 1, IEEE, 1994, pp. 31-35.
[39] L.I. Rudin, S. Osher, and E. Fatemi, {\it Nonlinear total variation based noise removal algorithms}, Phys. D, 60 (1992), pp. 259-268. · Zbl 0780.49028
[40] R.D. Scarpetti, S. Nath, J. Barraza, C.A. Ekdahl, E. Jacquez, B.T. McCuistian, K. Nielsen, M. Schulze, J. Seitz, G.J. Caporaso, Y.J. Chen, G. Logan, and F. Bieniosek, {\it Status of the DARHT second axis accelerator at the Los Alamos National Laboratory}, in Proceedings of PAC07, 2007, pp. 831-835.
[41] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen, {\it Variational Methods in Imaging}, Springer, New York, 2009. · Zbl 1177.68245
[42] J. Smith, R. Carlson et al., {\it Cygnus dual beam radiography source}, in Proceedings of the Pulsed Power Conference, IEEE, 2005, pp. 334-337.
[43] J.R. Smith et al., {\it Cygnus performance in subcritical experiments}, in Proceedings of the 16th IEEE International Pulsed Power Conference, 2007, pp. 685-688.
[44] L.M. Smith, D.R. Keefer, and S.I. Sudharsanan, {\it Abel inversion using transform techniques}, J. Quant. Spectrosc. Radiat. Transfer, 39 (1988), pp. 367-373.
[45] A.M. Stuart, {\it Inverse problems: A Bayesian perspective}, Acta Numer., 19 (2010), pp. 451-559. · Zbl 1242.65142
[46] L. Tenorio, {\it Statistical regularization of inverse problems}, SIAM Rev., 43 (2001), pp. 347-366. · Zbl 0976.65114
[47] P.A. Vicharelli and W.P. Lapatovich, {\it Iterative method for computing the inverse Abel transform}, Appl. Phys. Lett., 50 (1987), pp. 557-559.
[48] C.R. Vogel, {\it Computational Methods for Inverse Problems}, SIAM, Philadelphia, 2002. · Zbl 1008.65103
[49] E. Whitaker and G. Watson, {\it A Course of Modern Analysis}, 4th ed., Cambridge University Press, New York, 1927. · JFM 53.0180.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.