×

C-library raft: reconstruction algorithms for tomography. Applications to X-ray fluorescence tomography. (English) Zbl 1258.92018

Summary: There are many reconstruction algorithms for tomography, raft for short, and some of them are considered “classic” by researchers. The so-called raft library provides a set of useful and basic tools, usually needed in many inverse problems that are related to medical imaging. The subroutines in raft are free software and written in C language; portable to any system with a working C compiler. This paper presents source codes written according to raft routines, applied to a new imaging modality called X-ray fluorescence tomography.

MSC:

92C55 Biomedical imaging and signal processing
92-04 Software, source code, etc. for problems pertaining to biology

Keywords:

XFCT
Full Text: DOI

References:

[1] Chang, L. T., A method for attenuation correction in radionuclide computed tomography, IEEE Trans. Nucl. Science, NS-25, 1, 638-648 (1978)
[2] Hogan, J. P.; Gonsalves, R. A.; Krieger, A. S., Fluorescent Computer tomography: a model for correction of X-ray absorption, IEEE Trans. Nucl. Science, 38, 6 (1991)
[3] Golosio, B.; Simionovic, A.; Somogyi, A., Internal elemental microanalysis combining X-ray fluorescence, Compton and transmission tomography, Journal of Applied Physics, 94, 1, 145-156 (2003)
[4] Brunetti, A.; Golosio, B., Software for X-ray fluorescence and scattering tomographic reconstruction, Computer Physics Communications, 141, 412-425 (2001) · Zbl 0993.65144
[5] La Riviere, P. J.; Vargas, P.; Newville, M.; Sutton, S. R., Reduced-scan schemes for X-ray fluorescence computed tomography, IEEE Trans. Nuclear Science, 54, 5, 1535-1542 (2007)
[6] Kunyansky, L. A., Generalized and attenuated Radon transforms: restorative approach to the numerical inversion, Inverse Problems, 8, 809-819 (1992) · Zbl 0760.65117
[7] Kunyansky, L. A., A new SPECT reconstruction algorithm based on the Novikovʼs explicit inversion formula, Inverse Problems, 17, 293-306 (2001) · Zbl 0995.65142
[8] Cichocki, T.; Heck, D.; Jarczyk, L.; Rokita, E.; Strzalkowski, A.; Sych, M., Elemental composition of the human atherosclerotic artery wall, Histochemistry, 83, 87-92 (1985)
[9] Novikov, R. G., An inversion formula for the attenuated X-ray transform, Ark. Mat., 40, 145-167 (2002), (Rapport de Recherche 00/05-3, Université de Nantes, Laboratoire de Mathématiques) · Zbl 1036.53056
[10] E.X. Miqueles, A.R. De Pierro, Fluorescence Tomography: Reconstruction by Iterative Methods, ISBI 2008, Paris, pp. 760-763.; E.X. Miqueles, A.R. De Pierro, Fluorescence Tomography: Reconstruction by Iterative Methods, ISBI 2008, Paris, pp. 760-763.
[11] Miqueles, E. X.; De Pierro, A. R., Exact analytic reconstruction in X-ray fluorescence CT and approximate versions, Phys. Med. Biol., 55, 1007-1024 (2010)
[12] Miqueles, E. X.; De Pierro, A. R., Iterative reconstruction in X-ray fluorescence tomography based on radon inversion, IEEE Trans. Med. Imaging, 30, 2, 438-450 (2011)
[13] E.X. Miqueles, A.R. De Pierro, On the Inversion of the XFCT Radon transform, Studies in Applied Mathematics (2011), in press.; E.X. Miqueles, A.R. De Pierro, On the Inversion of the XFCT Radon transform, Studies in Applied Mathematics (2011), in press. · Zbl 1244.35151
[14] Fokas, A. S., A Unified Approach to Boundary Value Problems, CBMS-NSF Regional Conference Series in Applied Mathematics (2008), SIAM: SIAM Philadelphia · Zbl 1165.35478
[15] Herman, G. T., Image Reconstruction from Projections: The Fundamentals of Computerized Tomography (1980), Academic Press: Academic Press New York · Zbl 0538.92005
[16] De Pierro, A. R., A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography, IEEE Trans. Med. Imag., 14, 1, 132-137 (1995)
[17] Natterer, F.; Wubbeling, F., Mathematical Methods in Image Reconstruction (2001), SIAM · Zbl 0974.92016
[18] Cholewa, M.; Dillon, C.; Lay, P.; Phillips, D.; Talarico, T.; Lai, B., High resolution nuclear and X-ray microprobes and their applications in single cell analysis, Nucl. Inst. Methods B, 181, 715-722 (2001)
[19] Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y., Reconstruction method for fluorescent X-ray computed tomography by least-squares method using singular value decomposition, IEEE Trans. Nucl. Science, 44, 1, 54-62 (1997)
[20] Friedmann Rust, G.; Weigelt, J., X-ray fluorescent computer tomography with synchrotron radiation, IEEE Trans. Nucl. Science, 45, 1 (1998)
[21] Guy, J.; Mangeot, B.; Salès, A., Solutions for Fredholm equations through nonlinear iterative processes, J. Phys. A Math. Gen., 17, 1403-1413 (1984) · Zbl 0565.65081
[22] McClendon, M.; Rabitz, H., Variational methods for approximating solutions of \(\nabla^2 u = f + k u\) and generalizations, SIAM, 46, 4 (1986) · Zbl 0606.65079
[23] Seismic Unix, http://www.cwp.mines.edu/cwpcodes/; Seismic Unix, http://www.cwp.mines.edu/cwpcodes/
[24] GNUPlot, http://www.gnuplot.info/; GNUPlot, http://www.gnuplot.info/
[25] Octave, http://www.gnu.org/software/octave; Octave, http://www.gnu.org/software/octave
[26] Deans, S., The Radon Transform and Some of Its Applications Deans (1983), John Wiley & Sons: John Wiley & Sons New York · Zbl 0561.44001
[27] Jain, A. K., Fundamentals of Digital Image Processing (1989), Englewood Cliffs: Englewood Cliffs Prentice Hall · Zbl 0744.68134
[28] Fessler, J. A., Statistical image reconstruction methods for transmission tomography, (Fitzpatrick, J. M.; Sonka, M., Handbook of Medical Imaging, vol. 2 (2000), SPIE Press: SPIE Press Bellingham, WA), 1-70
[29] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge University Press: Cambridge University Press New York · Zbl 0576.15001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.