×

An inversion formula for the attenuated \(X\)-ray transformation. (English) Zbl 1036.53056

In this paper the author deals with inverse scattering for the attenuated \(X\)-ray equation. Let \(P_a f(x,\theta)=\int_R \exp(-D_a(x+s\theta))f(x+s\theta)\,ds,\) be the attenuated \(X\)-ray transformation, where \(a,f\) are sufficiently regular functions on \(\mathbb{R}^d\), sufficiently rapidly vanishing at infinity, and \(D_a(x)=\int_0^{+\infty} a(x+s\theta)\,ds,\) \(x\in \mathbb{R}^d, \theta\in S^{d-1}\).
The problem of finding \(f| _Y\) from \(P_af| _{T {S}^1(Y)}\) is considered under the assumption that \(a| _Y\) is known, where \(Y\) is a two-dimensional plane in \( \mathbb{R}^d\), \(d\geq 2\), and \(T {S}^1(Y)\) is the set of all oriented straight lines lying in \(Y\). This is an inverse scattering problem for the equation \(\sum \theta_i\partial/\partial x_i \psi(x,\theta) +a(x)\psi(x,\theta)=f(x)\).
For this problem, the case \(d\geq 3\) is reduced to the case \(d=2\). In this case, under some assumptions on the regularity of \(a\) and \(f\), and under the condition that \(a\) is known, \(P_af\) on \(T {S}^1\) uniquely determines \(f\) on \( \mathbb{R}^2\), and the inversion formulae are explicitly given. This inversion method implies an explicit scheme by which \(P_af\) on \(\mathcal{M} (S)=\bigcup_{y\in X^{\perp}(S)}T {S}^1(X(S)+y)\) determines \(f\) on \(\mathbb{R}^d\), \(d\geq 2\), uniquely where \(S\) is a great circle in \( {S}^{d-1}\) and \(X(S)\) is the linear span of \(S\) in \( \mathbb{R}^d\). Some generalizations, and several interesting subsequent results are also given.

MSC:

53C65 Integral geometry
44A12 Radon transform
Full Text: DOI

References:

[1] Aguilar, V. andKuchment, P., Range conditions for the multidimensional exponential X-ray transform,Inverse Problems 11 (1995), 977–982. · Zbl 0843.44005 · doi:10.1088/0266-5611/11/5/002
[2] Arbuzov, È. V., Bukhgeîm, A. L. andKazantsev, S. G., Two-dimensional tomography problems and the theory ofA-analytic functions, inAlgebra, Geometry, Analysis and Mathematical Physics (Novosibirsk, 1996), (Reshetnyak, Yu. G., Bokut’, L. A., Vodop’yanov, S. K. and Taîmanov, I. A., eds.), pp. 6–20, 189, Izdat. Ross. Akad. Nauk Sibirsk. Otdel. Inst. Mat., Novosibirsk, 1997 (Russian). English transl.:Siberian Adv. Math. 8 (1998), 1–20.
[3] Bernstein, I. N. andGerver, M. L., A condition of distinguishability of metrics by hodographs,Comput. Seismology 13 (1980), 50–73 (Russian).
[4] Boman, J., An example of non-uniqueness for a generalized Radon transform,J. Anal. Math. 61 (1993), 395–401. · Zbl 0792.44004 · doi:10.1007/BF02788850
[5] Boman, J. andQuinto, E. T., Support theorems for real-analytic Radon transforms,Duke Math. J. 55 (1987), 943–948. · Zbl 0645.44001 · doi:10.1215/S0012-7094-87-05547-5
[6] Faddeev, L. D., Mathematical aspects of the three-body problem in the quantum scattering theory,Trudy Mat. Inst. Steklov 69 (1963) (Russian). English transl.: Israel Program for Scientific Translations, Jerusalem, 1965.
[7] Finch, D. V., Uniqueness for the attenuated X-ray transform in the physical range,Inverse Problems 2 (1986), 197–203. · doi:10.1088/0266-5611/2/2/010
[8] Fokas, A. S. andNovikov, R. G., Discrete analogues of 166-1 and of Radon transform,C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 75–80. · Zbl 0748.35054
[9] Kuchment, P., Lancaster, K. andMogilevskaya, L., On local tomography,Inverse Problems 11 (1995), 571–589. · Zbl 0832.44001 · doi:10.1088/0266-5611/11/3/006
[10] Kunyansky, L., A new SPECT reconstruction algorithm based on the Novikov’s explicit inversion formula,E-print, mp_arc/00-342.
[11] Manakov, S. V. andZakharov, V. E., Three-dimensional model of relativistic-invariant field theory integrable by inverse scattering transform,Lett. Math. Phys. 5 (1981), 247–253. · doi:10.1007/BF00420705
[12] Markoe, A. andQuinto, E., An elementary proof of local invertibility for generalized and attenuated Radon transforms,SIAM J. Math. Anal. 16 (1985), 1114–1119. · Zbl 0588.44005 · doi:10.1137/0516082
[13] Muhometov, R. G., The problem of recovery of a two-dimensional Riemannian metric and integral geometry,Dokl. Akad. Nauk SSSR 232 (1977), 32–35 (Russian). English transl.:Soviet Math. Dokl. 18 (1977), 27–31.
[14] Natterer, F.,The Mathematics of Computerized Tomography, Teubner, Stuttgart, and Wiley, Chichester, 1986. · Zbl 0617.92001
[15] Novikov, R. G., Small angle scattering and X-ray transform in classical mechanics,Ark. Mat. 37 (1999), 141–169. · Zbl 1088.70009 · doi:10.1007/BF02384831
[16] Novikov, R. G., On determination of a gauge field onR d from its non-abelian Radon transform along oriented straight lines, to appear inJ. Inst. Math. Jussieu. · Zbl 1072.53023
[17] Novikov, R. G., An inversion formula for the attenuated X-ray transformation,Preprint, 2000. · Zbl 0984.44001
[18] Palamodov, V. P., An inversion method for an attenuated X-ray transform,Inverse Problems 12 (1996), 717–729. · Zbl 0863.65086 · doi:10.1088/0266-5611/12/5/013
[19] Sharafutdinov, V. A., On the problem of emission tomography for nonhomogeneous media,Dokl. Akad. Nauk 326 (1992), 446–448 (Russian). English transl.:Soviet Phys. Dokl. 37 (1992), 469–470.
[20] Tretiak, O. J. andMetz, C., The exponential Radon transform,SIAM J. Appl. Math. 39 (1980), 341–354. · Zbl 0459.44003 · doi:10.1137/0139029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.