×

The influence of nucleus mechanics in modelling adhesion-independent cell migration in structured and confined environments. (English) Zbl 1521.92024

Summary: Recent biological experiments [T. Lämmermann et al., “Rapid leukocyte migration by integrin-independent flowing and squeezing, Nature, London 453 (7191), 51–55 (2008; doi:10.1038/nature06887); A. Reversat et al., “Cellular locomotion using environmental topography”, ibid. 582 (7813), 582–585 (2020; doi:10.1038/s41586-020-2283-z); E. M. Balzer et al., “Physical confinement alters tumor cell adhesion and migration phenotypes”, FASEB J. 26, No. 10, 4045–4056 (2012; doi:10.1096/fj.12-211441)] have shown that certain types of cells are able to move in structured and confined environments even without the activation of focal adhesion. Focusing on this particular phenomenon and based on previous works [G. Jankowiak et al., Math. Models Methods Appl. Sci. 30, No. 3, 513–537 (2020; Zbl 1436.35225)], we derive a novel two-dimensional mechanical model, which relies on the following physical ingredients: the asymmetrical renewal of the actin cortex supporting the membrane, resulting in a backward flow of material; the mechanical description of the nuclear membrane and the inner nuclear material; the microtubule network guiding nucleus location; the contact interactions between the cell and the external environment. The resulting fourth order system of partial differential equations is then solved numerically to conduct a study of the qualitative effects of the model parameters, mainly those governing the mechanical properties of the nucleus and the geometry of the confining structure. Coherently with biological observations, we find that cells characterized by a stiff nucleus are unable to migrate in channels that can be crossed by cells with a softer nucleus. Regarding the geometry, cell velocity and ability to migrate are influenced by the width of the channel and the wavelength of the external structure. Even though still preliminary, these results may be potentially useful in determining the physical limit of cell migration in confined environments and in designing scaffolds for tissue engineering.

MSC:

92C17 Cell movement (chemotaxis, etc.)
92C10 Biomechanics

Citations:

Zbl 1436.35225

Software:

Julia

References:

[1] Abercrombie, M.; Heaysman, JE; Pegrum, SM, The locomotion of fibroblasts in culture. 3. Movements of particles on the dorsal surface of the leading lamella, Exp Cell Res, 62, 2, 389-398 (1970) · doi:10.1016/0014-4827(70)90570-7
[2] Balzer, EM; Tong, Z.; Paul, CD; Hung, WC; Stroka, KM; Boggs, AE; Martin, SS; Konstantopoulos, K., Physical confinement alters tumor cell adhesion and migration phenotypes, ASEB J Off Publ Fed Am Soc Exp Biol, 26, 10, 4045-4056 (2012)
[3] Barnhart, EL; Allen, GM; Jülicher, F.; Theriot, JA, Bipedal locomotion in crawling cells, Biophys J, 98, 6, 933-942 (2010) · doi:10.1016/j.bpj.2009.10.058
[4] Beadle, C.; Assanah, MC; Monzo, P.; Vallee, R.; Rosenfeld, SS; Canoll, P., The role of myosin II in glioma invasion of the brain, Mol Biol Cell, 19, 8, 3357-3368 (2008) · doi:10.1091/mbc.e08-03-0319
[5] Beneš, M.; Mikula, K.; Oberhuber, T.; Ševčovič, D., Comparison study for level set and direct Lagrangian methods for computing Willmore flow of closed planar curves, Comput Vis Sci, 12, 6, 307-317 (2009) · Zbl 1213.35033 · doi:10.1007/s00791-008-0112-2
[6] Bergert, M.; Erzberger, A.; Desai, RA; Aspalter, IM; Oates, AC; Charras, G.; Salbreux, G.; Paluch, EK, Force transmission during adhesion-independent migration, Nat Cell Biol, 17, 4, 524-529 (2015) · doi:10.1038/ncb3134
[7] Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, VB, Julia: a fresh approach to numerical computing, SIAM Rev, 59, 1, 65-98 (2017) · Zbl 1356.68030 · doi:10.1137/141000671
[8] Brückner, DB; Schmitt, M.; Fink, A.; Ladurner, G.; Flommersfeld, J.; Arlt, N.; Hannezo, E.; Rädler, JO; Broedersz, CP, Geometry adaptation of protrusion and polarity dynamics in confined cell migration, Phys Rev X, 12 (2022)
[9] Cao, X.; Moeendarbary, E.; Isermann, P.; Davidson, PM; Wang, X.; Chen, MB; Burkart, AK; Lammerding, J.; Kamm, RD; Shenoy, VB, A chemomechanical model for nuclear morphology and stresses during cell transendothelial migration, Biophys J, 111, 7, 1541-1552 (2016) · doi:10.1016/j.bpj.2016.08.011
[10] Chelly, H.; Recho, P., Cell motility as an energy minimization process, Phys Rev E, 105 (2022) · doi:10.1103/PhysRevE.105.064401
[11] Chen, J.; Weihs, D.; Van Dijk, M.; Vermolen, FJ, A phenomenological model for cell and nucleus deformation during cancer metastasis, Biomech Model Mechanobiol, 17, 1429-1450 (2018) · doi:10.1007/s10237-018-1036-5
[12] Cooper, GM, The cell: a molecular approach (2000), Sunderland: Sinauer Associates, Sunderland
[13] Danuser, G.; Allard, J.; Mogilner, A., Mathematical modeling of eukaryotic cell migration: insights beyond experiments, Annu Rev Cell Dev Biol, 29, 1, 501-528 (2013) · doi:10.1146/annurev-cellbio-101512-122308
[14] Davidson, PM; Denais, C.; Bakshi, MC; Lammerding, J., Nuclear deformability constitutes a rate-limiting step during cell migration in 3-d environments, Cell Mol Bioeng, 7, 3, 293-306 (2014) · doi:10.1007/s12195-014-0342-y
[15] Davidson, PM; Battistella, A.; Déjardin, T.; Betz, T.; Plastino, J.; Borghi, N.; Cadot, B.; Sykes, C., Nesprin-2 accumulates at the front of the nucleus during confined cell migration, EMBO Rep, 21, 7, 49910 (2020) · doi:10.15252/embr.201949910
[16] DiMilla, PA; Stone, JA; Quinn, JA; Albelda, SM; Lauffenburger, DA, Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength, J Cell Biol, 122, 3, 729-737 (1993) · doi:10.1083/jcb.122.3.729
[17] Dreher, A.; Aranson, IS; Kruse, K., Spiral actin-polymerization waves can generate amoeboidal cell crawling, New J Phys, 16, 5 (2014) · doi:10.1088/1367-2630/16/5/055007
[18] Du, X.; Doubrovinski, K.; Osterfield, M., Self-organized cell motility from motor-filament interactions, Biophys J, 102, 8, 1738-1745 (2012) · doi:10.1016/j.bpj.2012.03.052
[19] Elliott, CM; Stinner, B.; Venkataraman, C., Modelling cell motility and chemotaxis with evolving surface finite elements, J R Soc Interface, 9, 76, 3027-3044 (2012) · doi:10.1098/rsif.2012.0276
[20] Evans LC (2010) Partial differential equations, 2nd edn. Graduate Studies in Mathematics, vol 19. American Mathematical Society, Providence, RI, p 749 · Zbl 1194.35001
[21] Even-Ram, S.; Yamada, KM, Cell migration in 3d matrix, Curr Opin Cell Biol, 17, 5, 524-532 (2005) · doi:10.1016/j.ceb.2005.08.015
[22] Farutin, A.; Étienne, J.; Misbah, C.; Recho, P., Crawling in a fluid, Phys Rev Lett, 123 (2019) · doi:10.1103/PhysRevLett.123.118101
[23] Fraley, SI; Feng, Y.; Krishnamurthy, R.; Kim, D-H; Celedon, A.; Longmore, GD; Wirtz, D., A distinctive role for focal adhesion proteins in three-dimensional cell motility, Nat Cell Biol, 12, 6, 598-604 (2010) · doi:10.1038/ncb2062
[24] Friedl, P.; Bröcker, E-B, The biology of cell locomotion within three-dimensional extracellular matrix, Cell Mol Life Sci CMLS, 57, 1, 41-64 (2000) · doi:10.1007/s000180050498
[25] Friedl, P.; Borgmann, S.; Bröcker, EB, Amoeboid leukocyte crawling through extracellular matrix: lessons from the Dictyostelium paradigm of cell movement, J Leukocyte Biol, 70, 4, 491-509 (2001) · doi:10.1189/jlb.70.4.491
[26] Friedl, P.; Wolf, K.; Lammerding, J., Nuclear mechanics during cell migration, Curr Opin Cell Biol, 23, 1, 55-64 (2011) · doi:10.1016/j.ceb.2010.10.015
[27] Fruleux, A.; Hawkins, RJ, Physical role for the nucleus in cell migration, J Phys Condens Matter, 28, 36 (2016) · doi:10.1088/0953-8984/28/36/363002
[28] Geisterfer, ZM; Zhu, DY; Mitchison, TJ; Oakey, J.; Gatlin, JC, Microtubule growth rates are sensitive to global and local changes in microtubule plus-end density, Curr Biol, 30, 15, 3016-3023 (2020) · doi:10.1016/j.cub.2020.05.056
[29] Giverso, C.; Preziosi, L., Mechanical perspective on chemotaxis, Phys Rev E, 98 (2018) · doi:10.1103/PhysRevE.98.062402
[30] Giverso, C.; Grillo, A.; Preziosi, L., Influence of nucleus deformability on cell entry into cylindrical structures, Biomech Model Mechanobiol, 13, 3, 481-502 (2014) · doi:10.1007/s10237-013-0510-3
[31] Giverso, C.; Arduino, A.; Preziosi, L., How nucleus mechanics and ECM microstructure influence the invasion of single cells and multicellular aggregates, Bull Math Biol, 80, 5, 1017-1045 (2018) · Zbl 1394.92020 · doi:10.1007/s11538-017-0262-9
[32] Gundersen, GG; Worman, HJ, Nuclear positioning, Cell, 152, 6, 1376-1389 (2013) · doi:10.1016/j.cell.2013.02.031
[33] Hawkins, RJ; Poincloux, R.; Bénichou, O.; Piel, M.; Chavrier, P.; Voituriez, R., Spontaneous contractility-mediated cortical flow generates cell migration in three-dimensional environments, Biophys J, 101, 5, 1041-1045 (2011) · doi:10.1016/j.bpj.2011.07.038
[34] Hecht, I.; Skoge, ML; Charest, PG; Ben-Jacob, E.; Firtel, RA; Loomis, WF; Levine, H.; Rappel, W-J, Activated membrane patches guide chemotactic cell motility, PLoS Comput Biol, 7, 6, 1-12 (2011) · doi:10.1371/journal.pcbi.1002044
[35] Holmes, WR; Edelstein-Keshet, L., A comparison of computational models for eukaryotic cell shape and motility, PLoS Comput Biol, 8, 12, 1-17 (2012) · doi:10.1371/journal.pcbi.1002793
[36] Jankowiak, G.; Peurichard, D.; Reversat, A.; Schmeiser, C.; Sixt, M., Modeling adhesion-independent cell migration, Math Models Methods Appl Sci, 30, 3, 513-537 (2020) · Zbl 1436.35225 · doi:10.1142/S021820252050013X
[37] Jilkine, A.; Edelstein-Keshet, L., A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues, PLoS Comput Biol, 7, 4, 1-15 (2011) · doi:10.1371/journal.pcbi.1001121
[38] Joe, B.; Simpson, RB, Corrections to Lee’s visibility polygon algorithm, BIT, 27, 4, 458-473 (1987) · Zbl 0643.68098 · doi:10.1007/BF01937271
[39] Kaoui, BB; Ristow, GH; Cantat, I.; Misbah, C.; Zimmermann, W., Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow, Phys Rev E Stat Nonlinear Soft Matter Phys, 77, 2 (2008) · doi:10.1103/PhysRevE.77.021903
[40] Kuchnir Fygenson, D.; Marko, JF; Libchaber, A., Mechanics of microtubule-based membrane extension, Phys Rev Lett, 79, 22, 4497 (1997) · doi:10.1103/PhysRevLett.79.4497
[41] Kuntz, RM; Saltzman, WM, Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration, Biophys J, 72, 3, 1472-1480 (1997) · doi:10.1016/S0006-3495(97)78793-9
[42] Laan, L.; Husson, J.; Munteanu, EL; Kerssemakers, JWJ; Dogterom, M., Force-generation and dynamic instability of microtubule bundles, PNAS, 105, 26, 8920-8925 (2008) · doi:10.1073/pnas.0710311105
[43] Lämmermann, T.; Bader, BL; Monkley, SJ; Worbs, T.; Wedlich-Söldner, R.; Hirsch, K.; Keller, M.; Förster, R.; Critchley, DR; Fässler, R.; Sixt, M., Rapid leukocyte migration by integrin-independent flowing and squeezing, Nature, 453, 7191, 51-55 (2008) · doi:10.1038/nature06887
[44] Le Goff, T.; Liebchen, B.; Marenduzzo, D., Actomyosin contraction induces in-bulk motility of cells and droplets, Biophys J, 119, 1025-1032 (2020) · doi:10.1016/j.bpj.2020.06.029
[45] Lee, DT, Visibility of a simple polygon, Comput Vis Graph Image Process, 22, 2, 207-221 (1983) · Zbl 0532.68071 · doi:10.1016/0734-189X(83)90065-8
[46] Lee, W.; Lim, S.; Kim, Y., The role of myosin II in glioma invasion: a mathematical model, PLoS ONE, 12, 2, 1-43 (2017) · doi:10.1371/journal.pone.0171312
[47] Li, Y.; Sun, SX, Transition from actin-driven to water-driven cell migration depends on external hydraulic resistance, Biophys J, 114, 12, 2965-2973 (2018) · doi:10.1016/j.bpj.2018.04.045
[48] Loisy, A.; Eggers, J.; Liverpool, TB, Tractionless self-propulsion of active drops, Phys Rev Lett, 123 (2019) · doi:10.1103/PhysRevLett.123.248006
[49] Manhart, A.; Oelz, D.; Schmeiser, C.; Sfakianakis, N., An extended filament based lamellipodium model produces various moving cell shapes in the presence of chemotactic signals, J Theor Biol, 382, 244-258 (2015) · Zbl 1343.92075 · doi:10.1016/j.jtbi.2015.06.044
[50] Mikula, K.; Ševčovič, D., Computational and qualitative aspects of evolution of curves driven by curvature and external force, Comput Vis Sci, 6, 4, 211-225 (2004) · Zbl 1522.53008 · doi:10.1007/s00791-004-0131-6
[51] Mizushima-Sugano, J.; Maeda, T.; Miki-Noumura, T., Flexural rigidity of singlet microtubules estimated from statistical analysis of their contour lengths and end-to-end distances, Biochim Biophys Acta (BBA) Gen Subj, 755, 2, 257-262 (1983) · doi:10.1016/0304-4165(83)90212-X
[52] Mofrad, MRK, Rheology of the cytoskeleton, Annu Rev Fluid Mech, 41, 1, 433-453 (2009) · Zbl 1163.76064 · doi:10.1146/annurev.fluid.010908.165236
[53] Moure, A.; Gomez, H., Computational model for amoeboid motion: coupling membrane and cytosol dynamics, Phys Rev E, 94 (2016) · doi:10.1103/PhysRevE.94.042423
[54] Moure, A.; Gomez, H., Phase-field model of cellular migration: three-dimensional simulations in fibrous networks, Comput Methods Appl Mech Eng, 320, 162-197 (2017) · Zbl 1439.74205 · doi:10.1016/j.cma.2017.03.025
[55] Moure, A.; Gomez, H., Three-dimensional simulation of obstacle-mediated chemotaxis, Biomech Model Mechanobiol, 17, 5, 1243-1268 (2018) · doi:10.1007/s10237-018-1023-x
[56] Moure, A.; Gomez, H., Dual role of the nucleus in cell migration on planar substrates, Biomech Model Mechanobiol, 19, 5, 1491-1508 (2020) · doi:10.1007/s10237-019-01283-6
[57] O’Neill, PR; Castillo-Badillo, JA; Meshik, X.; Kalyanaraman, V.; Melgarejo, K.; Gautam, N., Membrane flow drives an adhesion-independent amoeboid cell migration mode, Dev Cell, 46, 1, 4 (2018)
[58] Rafelski, SM; Theriot, JA, Crawling toward a unified model of cell mobility: spatial and temporal regulation of actin dynamics, Annu Rev Biochem, 73, 209-39 (2004) · doi:10.1146/annurev.biochem.73.011303.073844
[59] Recho, P.; Truskinovsky, L., Asymmetry between pushing and pulling for crawling cells, Phys Rev E, 87 (2013) · doi:10.1103/PhysRevE.87.022720
[60] Recho, P.; Putelat, T.; Truskinovsky, L., Contraction-driven cell motility, Phys Rev Lett, 111 (2013) · doi:10.1103/PhysRevLett.111.108102
[61] Recho, P.; Putelat, T.; Truskinovsky, L., Mechanics of motility initiation and motility arrest in crawling cells, J Mech Phys Solids, 84, 469-505 (2015) · doi:10.1016/j.jmps.2015.08.006
[62] Reversat, A.; Gaertner, F.; Merrin, J.; Stopp, J.; Tasciyan, S.; Aguilera, J.; de Vries, I.; Hauschild, R.; Hons, M.; Piel, M.; Callan-Jones, A.; Voituriez, R.; Sixt, M., Cellular locomotion using environmental topography, Nature, 7813, 582-585 (2020) · doi:10.1038/s41586-020-2283-z
[63] Rolli, CG; Seufferlein, T.; Kemkemer, R.; Spatz, JP, Impact of tumor cell cytoskeleton organization on invasiveness and migration: a microchannel-based approach, PLoS ONE, 5, 1, 1-8 (2010) · doi:10.1371/journal.pone.0008726
[64] Rowat, AC; Lammerding, J.; Ipsen, JH, Mechanical properties of the cell nucleus and the effect of Emerin deficiency, Biophys J, 91, 12, 4649-4664 (2006) · doi:10.1529/biophysj.106.086454
[65] Rubinstein, B.; Fournier, MF; Jacobson, K.; Verkhovsky, AB; Mogilner, A., Actin-myosin viscoelastic flow in the keratocyte lamellipod, Biophys J, 97, 7, 1853-1863 (2009) · doi:10.1016/j.bpj.2009.07.020
[66] Schaap, IAT; Carrasco, C.; de Pablo, PJ; MacKintosh, FC; Schmidt, CF, Elastic response, buckling, and instability of microtubules under radial indentation, Biophys J, 91, 4, 1521-1531 (2006) · doi:10.1529/biophysj.105.077826
[67] Scianna, M.; Preziosi, L., Modeling the influence of nucleus elasticity on cell invasion in fiber networks and microchannels, J Theor Biol, 317, 394-406 (2013) · doi:10.1016/j.jtbi.2012.11.003
[68] Scianna, M.; Preziosi, L., A cellular Potts model for the MMP-dependent and-independent cancer cell migration in matrix microtracks of different dimensions, Comput Mech, 53, 3, 485-497 (2014) · doi:10.1007/s00466-013-0944-6
[69] Scianna, M.; Preziosi, L.; Wolf, K., A cellular Potts model simulating cell migration on and in matrix environments, Math Biosci Eng, 10, 1, 235-261 (2013) · Zbl 1259.92024 · doi:10.3934/mbe.2013.10.235
[70] Shao, D.; Rappel, W-J; Levine, H., Computational model for cell morphodynamics, Phys Rev Lett, 105 (2010) · doi:10.1103/PhysRevLett.105.108104
[71] Soheilypour, M.; Peyro, M.; Peter, SJ; Mofrad, MRK, Buckling behavior of individual and bundled microtubules, Biophys J, 108, 7, 1718-1726 (2015) · doi:10.1016/j.bpj.2015.01.030
[72] Stamenović, D.; Mijailovich, SM; Tolić-Nørrelykke, IM; Chen, J.; Wang, N., Cell prestress. II. Contribution of microtubules, Am J Physiol Cell Physiol, 282, 3, 617-24 (2002) · doi:10.1152/ajpcell.00271.2001
[73] Stotsky, J.; Othmer, HG, How surrogates for cortical forces determine cell shape, Int J Non-Linear Mech, 140 (2022) · doi:10.1016/j.ijnonlinmec.2022.103907
[74] Stroka, KM; Jiang, H.; Chen, S-H; Tong, Z.; Wirtz, D.; Sun, SX; Konstantopoulos, K., Water permeation drives tumor cell migration in confined microenvironments, Cell, 157, 3, 611-623 (2014) · doi:10.1016/j.cell.2014.02.052
[75] Tawada, K.; Sekimoto, K., Protein friction exerted by motor enzymes through a weak-binding interaction, J Theor Biol, 150, 2, 193-200 (1991) · doi:10.1016/S0022-5193(05)80331-5
[76] Torres-Sánchez, A.; Millán, D.; Arroyo, M., Modelling fluid deformable surfaces with an emphasis on biological interfaces, J Fluid Mech, 872, 218-271 (2019) · Zbl 1430.76503 · doi:10.1017/jfm.2019.341
[77] Tran, PT; Marsh, L.; Doye, V.; Inoué, S.; Chang, F., A mechanism for nuclear positioning in fission yeast based on microtubule pushing, J Cell Biol, 153, 2, 397-411 (2001) · doi:10.1083/jcb.153.2.397
[78] Trepat, X.; Chen, Z.; Jacobson, K., Cell migration, Compr Physiol, 2, 2369-2392 (2012) · doi:10.1002/cphy.c110012
[79] Ulrich, TA; de Juan Pardo, EM; Kumar, S., The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells, Cancer Res, 69, 10, 4167-4174 (2009) · doi:10.1158/0008-5472.CAN-08-4859
[80] Versaevel, M.; Grevesse, T.; Gabriele, S., Spatial coordination between cell and nuclear shape within micropatterned endothelial cells, Nat Commun, 3, 1, 671 (2012) · doi:10.1038/ncomms1668
[81] Vicente-Manzanares M, Choi CK, Horwitz AR (2009) Integrins in cell migration—the actin connection. J Cell Sci 122(2):199-206
[82] Wolf, K.; Friedl, P., Molecular mechanisms of cancer cell invasion and plasticity, Br J Dermatol, 154, 11-15 (2006) · doi:10.1111/j.1365-2133.2006.07231.x
[83] Wolf, K.; Mazo, I.; Leung, H.; Engelke, K.; von Andrian, UH; Deryugina, EI; Strongin, AY; Bröcker, EB; Friedl, P., Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis, Br J Dermatol, 160, 2, 11-15 (2003)
[84] Wolf, K.; Wu, YI; Liu, Y.; Geiger, J.; Tam, E.; Overall, C.; Stack, MS; Friedl, P., Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion, Cell Biol, 9, 8, 893-904 (2007)
[85] Wolf, K.; Mt, Lindert; Krause, M.; Alexander, S.; Jt, Riet; Willis, AL; Hoffman, RM; Figdor, CG; Weiss, SJ; Friedl, P., Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force, J Cell Biol, 201, 7, 1069-1084 (2013) · doi:10.1083/jcb.201210152
[86] Wu, H.; de León, MAP; Othmer, HG, Getting in shape and swimming: the role of cortical forces and membrane heterogeneity in eukaryotic cells, J Math Biol, 77, 3, 1-32 (2018) · Zbl 1410.35143 · doi:10.1007/s00285-018-1223-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.