×

UMVU estimation of the ratio of powers of normal generalized variances under correlation. (English) Zbl 1141.62041

Summary: We consider estimation of the ratio of arbitrary powers of two normal generalized variances based on two correlated random samples. First, a result of the author [Decision theoretic estimation of the ratio of variances in a bivariate normal distribution. Ann. Inst. Stat. Math. 53, No. 3, 436–446 (2001; Zbl 0989.62004)] on UMVU estimation of the ratio of variances in a bivariate normal distribution is extended to the case of the ratio of any powers of the two variances. Motivated by these estimators’ forms we derive the UMVU estimator in the multivariate case. We show that it is proportional to the ratio of the corresponding powers of the two sample generalized variances multiplied by a function of the sample canonical correlations. The mean squared errors of the derived UMVU estimator and the maximum likelihood estimator are compared via simulation for some special cases.

MSC:

62H12 Estimation in multivariate analysis
62H20 Measures of association (correlation, canonical correlation, etc.)
33C90 Applications of hypergeometric functions
62F10 Point estimation

Citations:

Zbl 0989.62004

Software:

MOPS
Full Text: DOI

References:

[1] Constantine, A. G., Some non-central distribution problems in multivariate analysis, Ann. Math. Statist., 34, 1270-1285 (1963) · Zbl 0123.36801
[2] I. Dumitriu, A. Edelman, G. Shuman, MOPS: Multivariate Orthogonal Polynomials (symbolically), 2004, Preprint. \( \langle;\) http://front.math.ucdavis.edu/math-ph/\(0409066 \rangle;\); I. Dumitriu, A. Edelman, G. Shuman, MOPS: Multivariate Orthogonal Polynomials (symbolically), 2004, Preprint. \( \langle;\) http://front.math.ucdavis.edu/math-ph/\(0409066 \rangle;\) · Zbl 1122.33019
[3] Gradshteyn, L. S.; Ryzhik, L. M., Table of Integrals, Series and Products (2001), Academic Press: Academic Press New York
[4] Gupta, A. K.; Nagar, D. K., Matrix Variate Distributions (1999), Chapman & Hall: Chapman & Hall London · Zbl 0935.62064
[5] Gupta, A. K.; Ofori-Nyarko, S., Improved estimation of generalized variance and precision, Statistics, 26, 99-110 (1995) · Zbl 0812.62059
[6] Holgate, P., Estimation for the bivariate Poisson distribution, Biometrika, 51, 241-245 (1964) · Zbl 0133.11802
[7] Iliopoulos, G., Decision theoretic estimation of the ratio of variances in a bivariate normal distribution, Ann. Inst. Statist. Math., 53, 436-446 (2001) · Zbl 0989.62004
[8] Iliopoulos, G.; Kourouklis, S., On improved interval estimation for the generalized variance, J. Statist. Plann. Inference, 66, 305-320 (1998) · Zbl 0953.62026
[9] Iliopoulos, G.; Kourouklis, S., Improving on the best affine estimator of the ratio of generalized variances, J. Multivariate Anal., 68, 176-192 (1999) · Zbl 1063.62516
[10] James, A. T., Zonal polynomials of the real positive definite symmetric matrices, Ann. Math., 74, 456-469 (1961) · Zbl 0104.02803
[11] Kabe, D. G., On Subrahmaniam’s conjecture for an integral involving zonal polynomials, Utilitas Math., 15, 245-248 (1979) · Zbl 0412.33014
[12] Kim, H. J., A Monte Carlo method for computing the HPD interval for ratio of two multivariate normal generalized variances, Comm. Statist. Simulation Comput., 34, 155-166 (2005) · Zbl 1061.62039
[13] Kokonendji, C. C., On UMVU estimator of the generalized variance for natural exponential families, Monograf. Seminario Mat. García Galdeano, 27, 353-360 (2003) · Zbl 1037.62049
[14] Kokonendji, C. C.; Pommeret, D., Estimateurs de la variance généralisee pour des familles exponentielles non gaussiennes, Comptes Rendus de l’ Académie des Sciences—Série I, 332, 351-356 (2001) · Zbl 0965.62016
[15] Kubokawa, T.; Konno, Y., Estimating the covariance matrix and the generalized variance under a symmetric loss, Ann. Inst. Statist. Math., 42, 331-343 (1990) · Zbl 0712.62047
[16] Muirhead, R. J., Aspects of Multivariate Statistical Theory (1982), Wiley: Wiley New York · Zbl 0556.62028
[17] Olkin, I.; Pratt, J. W., Unbiased estimation of certain correlation coefficients, Ann. Math. Statist., 29, 201-211 (1958) · Zbl 0094.14403
[18] Pal, N., Decision theoretic estimation of generalized variance and generalized precision, Comm. Statist. Theory Methods, 17, 4221-4230 (1988) · Zbl 0696.62109
[19] Papageorgiou, H.; Kemp, C. D.; Loukas, S., Some methods of estimation for the bivariate Hermite distribution, Biometrika, 70, 479-484 (1983)
[20] Peña, D.; Rodríguez, J., Descriptive measures of multivariate scatter and linear dependence, J. Multivariate Anal., 85, 361-374 (2003) · Zbl 1023.62057
[21] Sarkar, S. K., On improving the shortest length confidence interval for the generalized variance, J. Multivariate Anal., 31, 136-147 (1989) · Zbl 0687.62021
[22] Sarkar, S. K., Stein-type improvements of confidence intervals for the generalized variance, Ann. Inst. Statist. Math., 43, 369-375 (1991) · Zbl 0761.62070
[23] SenGupta, A., Tests for standardized generalized variances of multivariate normal populations of possibly different dimensions, J. Multivariate Anal., 23, 209-219 (1987) · Zbl 0651.62049
[24] Shorrock, R. W.; Zidek, J. V., An improved estimator of the generalized variance, Ann. Statist., 4, 629-638 (1976) · Zbl 0353.62039
[25] Sinha, B. K., On improved estimators of the generalized variance, J. Multivariate Anal., 6, 617-625 (1976) · Zbl 0351.62015
[26] Sinha, B. K.; Ghosh, M., Inadmissibility of the best equivariance estimators of the variance-covariance matrix, the precision matrix, and the generalized variance under entropy loss, Statist. Decisions, 5, 201-227 (1987) · Zbl 0634.62050
[27] A. Takemura, Zonal polynomials, Lecture Notes-Monograph Series, vol. 4, Institute of Mathematical Statistics, 1984.; A. Takemura, Zonal polynomials, Lecture Notes-Monograph Series, vol. 4, Institute of Mathematical Statistics, 1984. · Zbl 1356.62002
[28] Tripathi, R. C.; Gupta, R. C.; Gurland, J., Estimation of parameters in beta binomial model, Ann. Inst. Statist. Math., 46, 317-331 (1994) · Zbl 0816.62024
[29] Wilks, S. S., Certain generalizations in the analysis of variance, Biometrika, 24, 471-494 (1932) · Zbl 0006.02301
[30] Zacks, S., Pitman efficiency, (Kotz, S.; Johnson, N., Encyclopedia of Statistical Science, vol. VI (1985), Wiley: Wiley New York), 731-735 · Zbl 0657.62002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.