×

On improved interval estimation for the generalized variance. (English) Zbl 0953.62026

Summary: A confidence interval for the generalized variance of a matrix normal distribution with unknown mean is constructed which improves on the usual minimum size (i.e., minimum length or minimum ratio of endpoints) interval based on the sample generalized variance alone in terms of both coverage probability and size. The method is similar to the univariate case treated by C. Goutis and G. Casella [Ann. Stat. 19, No. 4, 2015-2031 (1991; Zbl 0745.62026)].

MSC:

62F25 Parametric tolerance and confidence regions
62H12 Estimation in multivariate analysis
62C12 Empirical decision procedures; empirical Bayes procedures

Citations:

Zbl 0745.62026
Full Text: DOI

References:

[1] Anderson, T. W., An Introduction to Multivariate Statistical Analysis (1984), Wiley: Wiley New York · Zbl 0651.62041
[2] Brewster, J. F.; Zidek, J. V., Improving on equivariant estimators, Ann. Statist., 2, 21-38 (1974) · Zbl 0275.62006
[3] Brown, L. D., Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters, Ann. Math. Statist., 39, 29-48 (1968) · Zbl 0162.49901
[4] Cohen, A., Improved confidence intervals for the variance of a normal distribution, J. Amer. Statist. Assoc., 67, 382-387 (1972) · Zbl 0239.62030
[5] Eaton, M. L., The generalized variance: testing and ranking problem, Ann. Math. Statist., 39, 941-943 (1968) · Zbl 0161.38302
[6] Goutis, C.; Casella, G., Improved invariant confidence intervals for a normal variance, Ann. Statist., 19, 2015-2031 (1991) · Zbl 0745.62026
[7] Iliopoulos, G.; Kourouklis, S., Improving on the best affine equivariant estimator of the ratio of generalized variances (1995), Unpublished manuscript
[8] Kubokawa, T., A unified approach to improving equivariant estimators, Ann. Statist., 22, 290-299 (1994) · Zbl 0816.62021
[9] Kubokawa, T.; Konno, Y., Estimating the covariance matrix and the generalized variance under a symmetric loss, Ann. Inst. Statist. Math., 42, 331-343 (1990) · Zbl 0712.62047
[10] Kubokawa, T.; Srivastava, M. S., Double shrinkage estimators of ratio of variances, (Gupta, A. K.; Girko, V. L., Multidimensional Statistical Analysis and Theory of Random Matrices (1996), VSP: VSP Netherlands), 139-154 · Zbl 0872.62004
[11] Lehmann, E. L., Testing Statistical Hypotheses (1986), Wiley: Wiley New York · Zbl 0608.62020
[12] Maatta, J. M.; Casella, G., Developments in decision-theoretic variance estimation, Statist. Sci., 5, 90-120 (1990) · Zbl 0955.62529
[13] Nagata, Y., Improvements of interval estimations for the variance and the ratio of two variances, J. Japan Statist. Soc., 19, 151-161 (1989) · Zbl 0715.62072
[14] Sarkar, S. K., On improving the shortest length confidence interval for the generalized variance, J. Multivariate Anal., 31, 136-147 (1989) · Zbl 0687.62021
[15] Sarkar, S. K., Stein-type improvements of confidence intervals for the generalized variance, Ann. Inst. Statist. Math., 43, 369-375 (1991) · Zbl 0761.62070
[16] Shorrock, G., A minimax generalized Bayes confidence interval for a normal variance, (Ph.D. Dissertation (1982), Dept. Statistics, Rutgers Univ)
[17] Shorrock, G., Improved confidence intervals for a normal variance, Ann. Statist., 18, 972-980 (1990) · Zbl 0703.62040
[18] Shorrock, R. W.; Zidek, J. V., An improved estimator of the generalized variance, Ann. Statist., 4, 629-638 (1976) · Zbl 0353.62039
[19] Sinha, B. K., On improved estimators of the generalized variance, J. Multivariate Anal., 6, 617-625 (1976) · Zbl 0351.62015
[20] Sinha, B. K.; Ghosh, M., Inadmissibility of the best equivariant estimators of the variance-covariance matrix, the precision matrix, and the generalized variance under entropy loss, Statist. Decisions, 5, 201-227 (1987) · Zbl 0634.62050
[21] Stein, C., Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean, Ann. Inst. Statist. Math., 16, 155-160 (1964) · Zbl 0144.41405
[22] Strawderman, W. E., Minimax estimation of powers of the variance of a normal population under squared error loss, Ann. Statist., 2, 190-198 (1974) · Zbl 0309.62018
[23] Sugiura, N., A class of improved estimators of powers of the generalized variance and precision under squared loss, (Matusita, K., Statist. Theory and Data Analysis II (1988), North-Holland: North-Holland Amsterdam), 421-428 · Zbl 0729.62610
[24] Sugiura, N., Entropy loss and a class of improved estimators for powers of the generalized variance, Sankhyã A, 51, 328-333 (1989) · Zbl 0711.62047
[25] Sugiura, N., Lower bounds for the risks of equivariant estimators of generalized variance, (Md, A. K.; Saleh, E., Nonparametric Statistics and Related Topics (1992), Elsevier: Elsevier Amsterdam), 253-267
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.