×

Homogenization of trajectory statistical solutions for the 3D incompressible magneto-micropolar fluids. (English) Zbl 1527.35036

Summary: This article investigates the 3D incompressible magneto-micropolar fluids containing rapidly oscillating external force and angular momentum with respect to spatial variables. Under suitable assumptions on the oscillating external force and angular momentum, the existence of the trajectory attractor \({\mathcal{A}^{\mathrm{tr}}_\epsilon}\) and trajectory statistical solution \(\mu_{\epsilon, w_\epsilon}\) is established, as well as the convergence of \({\mathcal{A}^{\mathrm{tr}}_\epsilon}\) to the trajectory attractor \({\mathcal{A}^{\mathrm{tr}}_0}\) of the homogenized fluids. Then we prove the homogenization of trajectory statistical solution by establishing that \(\mu_{\epsilon, w_\epsilon}\) converges to the trajectory statistical solution \(\mu_{0, w}\) of the homogenized fluids as \(\epsilon\rightarrow 0^+ \). Our results reveal that the trajectory statistical information obtained from the 3D incompressible magneto-micropolar fluids with rapidly oscillating external force and angular momentum has certain homogenization effect with respect to spatial variables.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35B41 Attractors
34D35 Stability of manifolds of solutions to ordinary differential equations
76F20 Dynamical systems approach to turbulence
Full Text: DOI

References:

[1] C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, \(3^{nd}\) edition, Springer-Verlag, New York, 2006. · Zbl 1156.46001
[2] K. A. Bekmaganbetov, et al., Homogenization of trajectory attractors of 3D Navier-Stokes system with randomly oscillating force, Discrete Cont. Dyn. Syst., 37 (2017), 2375-2393. · Zbl 1357.35045
[3] K. A. G. A. V. V. Bekmaganbetov Chechkin Chepyzhov, Weak convergence of attractors of reaction-diffusion systems with randomly oscillating coefficients, Appl. Anal., 98, 256-271 (2019) · Zbl 1411.35043 · doi:10.1080/00036811.2017.1400538
[4] K. A. Bekmaganbetov, G. A. Chechkin and V. V. Chepyzhov, “Strange term” in homogenization of attractors of reaction-diffusion equation in perforated domain, Chaos Solitons Fractals, 140 (2020), 110128, 8 pp. · Zbl 1495.35098
[5] K. A. G. A. V. V. Bekmaganbetov Chechkin Chepyzhov, Strong convergence of trajectory attractors for reaction-diffusion systems with random rapidly oscillating terms, Comm. Pure Appl. Anal., 19, 2419-2443 (2020) · Zbl 1435.35072 · doi:10.3934/cpaa.2020106
[6] A. C. C. F. R. M. S. Bronzi Mondaini Rosa, Trajectory statistical solutions for three-dimensional Navier-Stokes-like systems, SIAM J. Math. Anal., 46, 1893-1921 (2014) · Zbl 1298.76066 · doi:10.1137/130931631
[7] A. C. C. F. R. M. S. Bronzi Mondaini Rosa, Abstract framework for the theory of statistical solutions, J. Differential Equations, 260, 8428-8484 (2016) · Zbl 1334.76038 · doi:10.1016/j.jde.2016.02.027
[8] A. C. R. M. S. Bronzi Rosa, On the convergence of statistical solutions of the 3D Navier-Stokes-\( \alpha\) model as \(\alpha\) vanishes, Discrete Cont. Dyn. Syst., 34, 19-49 (2014) · Zbl 1436.76007 · doi:10.3934/dcds.2014.34.19
[9] T. P. E. J. Caraballo Kloeden Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations, Discrete Cont. Dyn. Syst.-B, 10, 761-781 (2008) · Zbl 1187.35152 · doi:10.3934/dcdsb.2008.10.761
[10] G. A. V. V. L. S. Chechkin Chepyzhov Pankratov, Homogenization of trajectory attractors of Ginzburg-Landau equations with randomly oscillating terms, Discrete Cont. Dyn. Syst.-B, 23, 1133-1154 (2018) · Zbl 1404.35023 · doi:10.3934/dcdsb.2018145
[11] G. A. Chechkin, A. L. Piatnitski and A. S. Shamaev, Homogenization: Methods and Applications, American Mathematical Society, 2007. · Zbl 1128.35002
[12] M. D. N. E. Chekroun Glatt-Holtz, Invariant measures for dissipative dynamical systems: Abstract results and applications, Comm. Math. Phys., 316, 723-761 (2012) · Zbl 1336.37060 · doi:10.1007/s00220-012-1515-y
[13] V. V. M. V. Chepyzhov Contic Pata, Averaging of equations of viscoelasticity with singularly oscillating external forces, J. Math. Pures Appl., 108, 841-868 (2017) · Zbl 1403.35173 · doi:10.1016/j.matpur.2017.05.007
[14] V. V. V. M. I. Chepyzhov Pata Vishik, Averaging of nonautonomous damped wave equations with singularly oscillating external forces, J. Math. Pures Appl., 90, 469-491 (2008) · Zbl 1234.35146 · doi:10.1016/j.matpur.2008.07.001
[15] V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, 2002. · Zbl 0986.35001
[16] V. V. M. I. Chepzhov Vishik, Non-autonomous 2D Navier-Stokes system with singularly oscillating external force and its global attractor, J. Dyn. Differential Equations, 19, 655-684 (2007) · Zbl 1132.35017 · doi:10.1007/s10884-007-9077-y
[17] A. Eringen, Theory of micropolar fluids, J. Math. Mech., 16, 1-18 (1966) · doi:10.1512/iumj.1967.16.16001
[18] C. Foias, et al., Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001. · Zbl 0994.35002
[19] C. R. M. S. R. Foias Rosa Temam, A note on statistical solutions of the three-dimensional Navier-Stokes equations: The stationary case, C. R. Math., 348, 235-240 (2010) · Zbl 1186.35141 · doi:10.1016/j.crma.2009.12.017
[20] C. R. M. S. R. M. Foias Rosa Temam, Properties of stationary statistical solutions of the three-dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 31, 1689-1741 (2019) · Zbl 1421.35243 · doi:10.1007/s10884-018-9719-2
[21] G. P. S. Galdi Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Inter. J. Eng. Sci., 15, 105-108 (1977) · Zbl 0351.76006 · doi:10.1016/0020-7225(77)90025-8
[22] H. C. Jiang Zhao, Trajectory statistical solutions and Liouville type theorem for nonlinear wave equations with polynomial growth, Adv. Differential Equations, 26, 107-132 (2021) · Zbl 1480.35056
[23] P. E. P. J. Kloeden Marín-Rubio Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Comm. Pure Appl. Anal., 8, 785-802 (2009) · Zbl 1168.35412 · doi:10.3934/cpaa.2009.8.785
[24] M. H. Li Shang, Large time deacy of solutions for the 3D magneto-micropolar equations, Nonlinear. Anal.-RWA, 44, 479-496 (2018) · Zbl 1404.35050 · doi:10.1016/j.nonrwa.2018.05.013
[25] Z. Lin, et al., Statistical solution and Kolmogorov entropy for the impulsive discrete KleinGordon-Schrödinger type equations, Discrete Cont. Dyn. Syst.-B, 28 (2023), 20-49. · Zbl 1498.35606
[26] G. Łukaszewicz, Micropolar Fluids-Theory and Applications, Birkhäuser, Boston, 1999. · Zbl 0923.76003
[27] G. Łukaszewicz, Pullback attractors and statistical solutions for 2-D Navier-Stokes equations, Discrete Cont. Dyn. Syst.-B, 9, 643-659 (2008) · Zbl 1191.35067 · doi:10.3934/dcdsb.2008.9.643
[28] G. J. J. C. Łukaszewicz Real Robinson, Invariant measures for dissipative dynamical systems and generalised Banach limits, J. Dyn. Differential Equations, 23, 225-250 (2011) · Zbl 1230.37094 · doi:10.1007/s10884-011-9213-6
[29] G. J. C. Łukaszewicz Robinson, Invariant measures for non-autonomous dissipative dynamical systems, Discrete Cont. Dyn. Syst., 34, 4211-4222 (2014) · Zbl 1351.37076 · doi:10.3934/dcds.2014.34.4211
[30] G. W. Łukaszewicz Sadowski, Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains, Z. Angew. Math. Phys., 55, 247-257 (2004) · Zbl 1055.35026 · doi:10.1007/s00033-003-1127-7
[31] V. A. Marchenko and E. Y. Khruslov, Homogenization of Partial Differential Equations, Boston, Birkhäuser, 2006. · Zbl 1113.35003
[32] B. C. C. Miao Xu Zhao, Statistical solution and piecewise Liouville theorem for the impulsive discrete Zakharov equations, AIMS Math., 7, 9089-9116 (2022) · doi:10.3934/math.2022505
[33] Y. X. L. Qin Yang Xin, Averaging of a 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal.-RWA., 13, 893-904 (2012) · Zbl 1239.35128 · doi:10.1016/j.nonrwa.2011.08.025
[34] D. J. Regim Wu, Global regularity for the 2D magneto-micropolar fluid equations with partial dissipation, J. Math. Study, 49, 169-194 (2016) · Zbl 1363.35296 · doi:10.4208/jms.v49n2.16.05
[35] M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions, Math. Nachr., 188, 301-319 (1997) · Zbl 0893.76006 · doi:10.1002/mana.19971880116
[36] T. Tachim Medjo, Non-autonomous planetary 3D geostrophic equations with oscillating external force and its global attractor, Nonlinear Anal.-RWA., 12, 1437-1452 (2011) · Zbl 1223.35080 · doi:10.1016/j.nonrwa.2010.10.004
[37] T. Tachim Medjo, A non-autonomous two-phase flow model with oscillating external force and its global attractor, Nonlinear Anal., 75, 226-243 (2012) · Zbl 1230.35091 · doi:10.1016/j.na.2011.08.024
[38] T. Tachim Medjo, Averaging of an homogeneous two-phase flow model with oscillating external forces, Discrete Cont. Dyn. Syst., 32, 3665-3690 (2012) · Zbl 1247.35097 · doi:10.3934/dcds.2012.32.3665
[39] R. Temam, Navier-Stokes Equations (Theory and Numerical Analysis), North-Holland, Amsterdam, 1984. · Zbl 0568.35002
[40] J. X. C. Wang Zhang Zhao, Statistical solutions for a nonautonomous modified Swift-Hohenberg equation, Math. Methods Appl. Sci., 44, 14502-14516 (2021) · Zbl 1485.35327 · doi:10.1002/mma.7719
[41] J. Wang, C. Zhao and T. Caraballo, Invariant measures for the 3D globally modified Navier-Stokes equations with unbounded variable delays, Comm. Nonl. Sci. Numer. Simu., 91 (2020), 105459, 14 pp. · Zbl 1454.35262
[42] X. Wang, Upper-semicontinuity of stationary statistical properties of dissipative systems, Discrete Cont. Dyn. Syst., 23, 521-540 (2009) · Zbl 1154.37370 · doi:10.3934/dcds.2009.23.521
[43] K. Yamazaki, Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity, Discrete Cont. Dyn. Syst., 35, 2193-2207 (2015) · Zbl 1308.35232 · doi:10.3934/dcds.2015.35.2193
[44] H. X. C. Yang Han Zhao, Homogenization of trajectory statistical solutions for the 3D incompressible micropolar fluids with rapidly oscillating terms, Mathematics, 10, 1-15 (2022)
[45] B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations, Acta Math. Sci. Ser. B (Engl. Ed.), 30, 1469-1480 (2010) · Zbl 1240.35421 · doi:10.1016/S0252-9602(10)60139-7
[46] C. Zhao, et al., The trajectory attractor and its limiting behavior for the convective BrinkmanForchheimer equations, Topological Meth. Nonl. Anal., 44 (2014), 413-433. · Zbl 1362.35056
[47] C. T. Zhao Caraballo, Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations, J. Differential Equations, 266, 7205-7229 (2019) · Zbl 1411.35051 · doi:10.1016/j.jde.2018.11.032
[48] C. T. G. Zhao Caraballo Łukaszewicz, Statistical solution and Liouville type theorem for the Klein-Gordon-Schrödinger equations, J. Differential Equations, 281, 1-32 (2021) · Zbl 1459.35060 · doi:10.1016/j.jde.2021.01.039
[49] C. Zhao, H. Jiang and T. Caraballo, Statistical solutions and piecewise Liouville theorem for the impulsive reaction-diffusion equations on infinite lattices, Appl. Math. Comp., 404 (2021), 126103, 14 pp. · Zbl 1510.35158
[50] C. Y. T. Zhao Li Caraballo, Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications, J. Differential Equations, 269, 467-494 (2020) · Zbl 1436.35050 · doi:10.1016/j.jde.2019.12.011
[51] C. Zhao, Y. Li and G. Łukaszewicz, Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids, Z. Angew. Math. Phys., 71 (2020), Paper No. 141, 24 pp. · Zbl 1467.35267
[52] C. Zhao, Y. Li and Y. Sang, Using trajectory attractor to construct trajectory statistical solution for the 3D incompressible micropolar flows, ZAMM Z. Angew. Math. Mech., 100 (2020), e201800197, 15 pp. · Zbl 07800095
[53] C. Zhao, Y. Li and Z. Song, Trajectory statistical solutions for the 3D Navier-Stokes equations: The trajectory attractor approach, Nonlinear Anal.-RWA., 53 (2020), 103077, 10 pp. · Zbl 1433.35249
[54] C. Zhao, Z. Song and T. Caraballo, Strong trajectory statistical solutions and Liouville type equations for dissipative Euler equations, Appl. Math. Lett., 99 (2020), 105981, 6 pp. · Zbl 1425.37047
[55] C. W. C. Zhao Sun Hsu, Pullback dynamical behaviors of the non-autonomous micropolar fluid flows, Dynamics PDE, 12, 265-288 (2015) · Zbl 1327.35042 · doi:10.4310/DPDE.2015.v12.n3.a4
[56] C. J. T. Zhao Wang Caraballo, Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes equations, J. Differential Equations, 317, 474-494 (2022) · Zbl 1484.35101 · doi:10.1016/j.jde.2022.02.007
[57] C. G. G. Zhao Xue Łukaszewicz, Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations, Discrete Cont. Dyn. Syst.-B, 23, 4021-4044 (2018) · Zbl 1415.35059 · doi:10.3934/dcdsb.2018122
[58] C. L. Zhao Yang, Pullback attractor and invariant measure for the globally modified Navier-Stokes equations, Comm. Math. Sci., 15, 1565-1580 (2017) · Zbl 1391.35073 · doi:10.4310/CMS.2017.v15.n6.a4
[59] Z. C. Zhu Zhao, Pullback attractor and invariant measures for the three-dimensional regularized MHD equations, Discrete Cont. Dyn. Syst., 38, 1461-1477 (2018) · Zbl 1397.35039 · doi:10.3934/dcds.2018060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.