×

Averaging of a 3D Navier-Stokes-Voight equation with singularly oscillating forces. (English) Zbl 1239.35128

Summary: For \(\rho\in[0,1)\) and \(\varepsilon\in(0,1)\), we investigate the uniform attractors of a 3D non-autonomous Navier-Stokes-Voight equation with singularly oscillating forces \[ \begin{aligned} & u_t-\nu\Delta u-\alpha^2\Delta u_t+(u\cdot\nabla)u+\nabla p=f_0(t,x)+\varepsilon^{-\rho}f_1(t/\varepsilon,x),\;x\in\Omega, \\ & \nabla\cdot u=0,\;x\in\Omega,\\ & u(t,x)|_{\partial\Omega}=0,\\ & u(\tau,x)=u_\tau(x),\;\tau\in \mathbb R,\end{aligned} \] together with the averaged equations (corresponding to the limiting case \(\varepsilon=0)\) \[ \begin{aligned} & u_t-\nu\Delta u-\alpha^2\Delta u_t+(u\cdot\nabla)u+\nabla p=f_0(t,x),\;x\in\Omega, \\ & \nabla\cdot u=0,\;x\in\Omega,\\ & u(t,x)|_{\partial\Omega}=0,\\ & u(\tau,x)=u_\tau(x),\;\tau\in \mathbb R.\end{aligned} \] Under suitable assumptions on the external forces, we obtain the uniform boundedness of the related uniform attractor \({\mathcal A}^\varepsilon\) of the first system, and the convergence of \({\mathcal A}^\varepsilon\) to the attractor \({\mathcal A}^\varepsilon\) of the second system as \(\varepsilon\to 0^+\).

MSC:

35Q35 PDEs in connection with fluid mechanics
35B41 Attractors
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Y. Qin, X. Yang, X. Liu, Uniform attractors for a 3D non-autonomous Navier-Stokes-Voight Equations, Preprint, 2009.; Y. Qin, X. Yang, X. Liu, Uniform attractors for a 3D non-autonomous Navier-Stokes-Voight Equations, Preprint, 2009.
[2] Babin, A. V.; Vishik, M. I., (Attractors of Evolutionary Equations. Attractors of Evolutionary Equations, Studies in Mathematics and its Applications, vol. 25 (1992), North-Holland: North-Holland Amesterdam, London, New York, Tokyo) · Zbl 0778.58002
[3] Bonfoh, A.; Grasselli, M.; Miranville, A., Singularly perturbed 1D Cahn-Hilliard equation revisited, NoDEA Nonlinear Differential Equations Appl., 17, 6, 663-695 (2010) · Zbl 1387.35341
[4] Chepyzhov, V. V.; Gatti, S.; Grasselli, M.; Miranville, A.; Pata, V., Trajectory and global attractors for evolution equations with memory, Appl. Math. Lett., 19, 1, 87-96 (2006) · Zbl 1082.35035
[5] Chepyzhov, V. V.; Pata, V.; Vishik, M. I., Averaging of non-autonomous damped wave equations with singularity oscillating forces, J. Math. Pures Appl., 90, 469-491 (2008) · Zbl 1234.35146
[6] Chepyzhov, V. V.; Vishik, M. I., Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76, 664-913 (1997) · Zbl 0896.35032
[7] Chepyzhov, V. V.; Vishik, M. I., Attractors for Equations of Mathematical Physics (2001), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1046.37046
[8] Chueshov, I., Introduction to the Theory of Infinite-Dimensional Dissipative Systems (2002), ACTA · Zbl 1100.37047
[9] Evans, L. C., Weak Convergence Methods for Nonlinear Partial Differencial Equations (1990), American Mathematical Society: American Mathematical Society Providence, RI
[10] Feifeisl, E., Dynamics of Viscous Compressible Fluids (2004), Oxford University Press · Zbl 1080.76001
[11] Gal, C. G.; Grasselli, M., Instability of two-phase flows: a lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system, Physica D, 240, 7, 629-635 (2011) · Zbl 1214.37055
[12] Grasselli, M.; Pata, V., Attractor for a conserved phase-field system with hyperbolic heat conduction, Math. Methods Appl. Sci., 27, 16, 1917-1934 (2004) · Zbl 1072.37055
[13] Grasselli, M.; Pata, V., Uniform attractors of nonautonomous dynamical systems with memory, (Evolution Equations, Semigroups and Functional Analysis. Evolution Equations, Semigroups and Functional Analysis, Milano, 2000. Evolution Equations, Semigroups and Functional Analysis. Evolution Equations, Semigroups and Functional Analysis, Milano, 2000, Progr. Nonlinear Differential Equations Appl., vol. 50 (2002), Birkhäuser: Birkhäuser Basel), 155-178 · Zbl 1039.34074
[14] Hale, J. K., Asymptotic Behavior of Dissipative Systems (1988), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0642.58013
[15] Hou, Y.; Li, K., The uniform attractors for the 2D non-autonomous Navier-Stokes flow in some unbounded domain, Nonlinear Anal. TMA, 58, 609-630 (2004) · Zbl 1057.35031
[16] Kalantarov, V. K., Attractors for some nonlinear problems of mathematical physics, Zap. Nauchn. Sem. LOMI, 152, 50-54 (1986) · Zbl 0621.35022
[17] V.K. Kalantarov, Global behavior of solutions of nonlinear equations of mathematical physics of classical and non-classical type, Postdoctoral Thesis, St. Petersburg, 1988.; V.K. Kalantarov, Global behavior of solutions of nonlinear equations of mathematical physics of classical and non-classical type, Postdoctoral Thesis, St. Petersburg, 1988.
[18] Kalantarov, V. K.; Titi, E. S., Global attractors and determining models for the 3D Navier-Stokes-Voight equations, Chin. Ann. Math. Ser. B, 30, 697-714 (2009) · Zbl 1178.37112
[19] Kloeden, P. E.; Langa, J. A., Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463, 163-181 (2007) · Zbl 1133.37323
[20] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow (1969), Gordon and Breach: Gordon and Breach New York · Zbl 0184.52603
[21] Ladyzhenskaya, O. A., Attractors for Semigroup and Evolution Equations (1991), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0755.47049
[22] Lu, S. S.; Wu, H.; Zhong, C. K., Attractors for non-autonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13, 3, 701-719 (2005) · Zbl 1083.35094
[23] Ma, S.; Zhong, C. K., The attractors for weakly damped non-autonomous hyperbolic equations with a new class of external force, Discrete Contin. Dyn. Syst., 18, 1, 53-70 (2007) · Zbl 1132.35018
[24] Ma, Q. F.; Wang, S. H.; Zhong, C. K., Necessary and sufficient conditions for the existence of global attractor for semigroup and application, Indiana Univ. Math. J., 51, 1541-1559 (2002) · Zbl 1028.37047
[25] Miranville, A.; Wang, X., Attractors for non-autonomous nonhomogenerous Navier-Stokes equations, Nonlinearity, 10, 5, 1047-1061 (1997) · Zbl 0908.35098
[26] Oskolkov, A. P., The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Nauchn. Sem. LOMI, 38, 98-136 (1973)
[27] Qin, Y., Nonlinear Parabolic-Hyperbolic Coupled Systems and their Attractors, Operator Theory, Advances and Applications, vol. 184 (2008), Birkhäuser: Birkhäuser Basel, Boston, Berlin · Zbl 1173.35004
[28] Qin, Y., Universal attractor in \(H^4\) for the nonlinear one-dimensional compressible Navier-Stokes equations, J. Differential Equations, 207, 1, 21-72 (2004) · Zbl 1064.35150
[29] Qin, Y.; Liu, H.; Song, C., Global attractor for a nonlinear thermoviscoelastic system in shape memory alloys, Proc. Roy. Soc. Edinburgh Sect. A, 138, 5, 1103-1135 (2008) · Zbl 1173.35386
[30] Qin, Y.; Rivera, J. E.M., Exponential stability and universal attractors for the Navier-Stokes equations of compressible fluids between two horizontal parallel plates in \(R^3\), Appl. Numer. Math., 47, 2, 209-235 (2003) · Zbl 1140.76445
[31] Qin, Y.; Rivera, J. E.M., Universal attractors for a nonlinear one-dimensional heat-conductive viscous real gas, Proc. Roy. Soc. Edinburgh Sect. A, 132, 3, 685-709 (2002) · Zbl 1006.35080
[32] F. Ramos, E.S. Titi, Invariant measures for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit, Preprint.; F. Ramos, E.S. Titi, Invariant measures for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit, Preprint. · Zbl 1387.35462
[33] Robinson, J. C., Infinite-Dimensional Dynamics Systems (2001), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0980.35001
[34] Sell, G. R., Global attractors for the three-dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 8, 1-33 (1996) · Zbl 0855.35100
[35] Sell, G. R.; You, Y., Dynamics of Evolutionary Equations (2002), Springer: Springer New York · Zbl 1254.37002
[36] Temam, R., Infinite Dimensional Dynamical Systems in Mechanics and Physics (1997), Springer: Springer Berlin · Zbl 0871.35001
[37] Temam, R., Navier-Stokes Equations, Theory and Numerical Analysis (1979), North Holland: North Holland Amsterdam · Zbl 0426.35003
[38] Zheng, S.; Qin, Y., Universal attractors for the Navier-Stokes equations of compressible and heat-conductive fluid in bounded annular domains in \(R^n\), Arch. Ration. Mech. Anal., 160, 2, 153-179 (2001) · Zbl 1027.35098
[39] Zheng, S.; Qin, Y., Maximal attractor for the system of one-dimensional polytropic viscous ideal gas, Quart. Appl. Math., 59, 3, 579-599 (2001) · Zbl 1172.35335
[40] Zhong, C. K.; Yang, M. H.; Sun, C. Y., The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223, 2, 367-399 (2006) · Zbl 1101.35022
[41] Chepyzhov, V. V.; Vishik, M. I., Averaging of 2D Navier-Stokes equations with singularity oscillating forces, Nonlinearity, 22, 351-370 (2009) · Zbl 1170.35345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.