×

On the evolution of slow dispersal in multispecies communities. (English) Zbl 1479.35875

Summary: For any \(N \geq 2\), we show that there are choices of diffusion rates \(\{d_i\}_{i=1}^N\) such that for \(N\) competing species which are ecologically identical and have distinct diffusion rates, the slowest disperser is able to competitively exclude the remainder of the species. In fact, the choices of such diffusion rates are open in the Hausdorff topology. Our result provides some evidence in the affirmative direction regarding the conjecture by Dockery et al. in 1998. The main tools include Morse decomposition of the semiflow and the theory of normalized Floquet principal bundle for linear parabolic equations. A critical step in the proof is to establish the smooth dependence of the Floquet bundle on diffusion rate and other coefficients, which may be of independent interest.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
37B35 Gradient-like behavior; isolated (locally maximal) invariant sets; attractors, repellers for topological dynamical systems
37L45 Hyperbolicity, Lyapunov functions for infinite-dimensional dissipative dynamical systems
35B40 Asymptotic behavior of solutions to PDEs
92D15 Problems related to evolution
92D25 Population dynamics (general)

References:

[1] P. Acquistapace and B. Terreni, Linear parabolic equations in Banach spaces with variable domains but constant interpolation spaces, Ann. Sc. Norm. Super. Pisa Ser. IV, 13 (1986), pp. 75-107. · Zbl 0612.34057
[2] P. Acquistapace and B. Terreni, Hölder classes with boundary conditions as interpolation spaces, Math. Z., 195 (1987), pp. 451-471. · Zbl 0635.35024
[3] P. Acquistapace and B. Terreni, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78 (1987), pp. 47-107. · Zbl 0646.34006
[4] P. Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equations, Differential Integral Equations, 1 (1988), pp. 433-457. · Zbl 0723.34046
[5] L. Altenberg, Resolvent positive linear operators exhibit the reduction phenomenon, Proc. Natl. Acad. Sci. USA, 109 (2012), pp. 3705-3710. · Zbl 1287.47034
[6] I. Averill, K.-Y. Lam, and Y. Lou, The role of advection in a two-species competition model: A bifurcation approach, Mem. Amer. Math. Soc., 245 (2017), 1161. · Zbl 1428.35001
[7] I. Averill, Y. Lou, and D. Munther, On several conjectures from evolution of dispersal, J. Biol. Dyn., 6 (2012), pp. 117-130. · Zbl 1444.92132
[8] R. S. Cantrell, C. Cosner, and V. Hutson, Permanence in some diffusive Lotka-Volterra models for three interacting species, Dynam. Systems Appl., 2 (1993), pp. 505-530. · Zbl 0795.92030
[9] R. S. Cantrell, C. Cosner, and Y. Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), pp. 497-518. · Zbl 1139.35048
[10] R. S. Cantrell, C. Cosner, and Y. Lou, Evolution of dispersal and the ideal free distribution, Math. Biosci. Eng., 7 (2010), pp. 17-36. · Zbl 1188.35102
[11] R. S. Cantrell, C. Cosner and Y. Lou, Evolutionary stability of ideal free dispersal strategies in patchy environments, J. Math. Biol., 65 (2012), pp. 943-965. · Zbl 1267.34097
[12] R. S. Cantrell, C. Cosner, Y. Lou, and D. Ryan, Evolutionary stability of ideal free dispersal in spatial population models with nonlocal dispersal, Can. Appl. Math. Q., 20 (2012), pp. 15-38. · Zbl 1496.92084
[13] R. S. Cantrell, C. Cosner, and Y. Zhou, Ideal Free Dispersal and Evolutionary Stability in Integrodifference Models, submitted, 2020.
[14] R. S. Cantrell and K.-Y. Lam, Competitive exclusion in phytoplankton communities in a eutrophic water column, Discrete Cont. Dyn. Syst. Ser. B, 26 (2021), pp. 1783-1795. · Zbl 1466.35240
[15] R. S. Cantrell and J. R. Ward, On competition-mediated coexistence, SIAM J. Appl. Math., 57 (1997), pp. 1311-1327. · Zbl 0892.92023
[16] X. Chen, K.-Y. Lam, and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst., 32 (2012), pp. 3841-3859. · Zbl 1258.35118
[17] X. Chen and Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 57 (2008), pp. 627-658. · Zbl 1153.35056
[18] E. Cho and Y.-J. Kim, Starvation driven diffusion as a survival strategy of biological organisms, Bull. Math. Biol., 75 (2013), pp. 845-870. · Zbl 1311.92155
[19] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. Math. 38, American Mathematical Society, Providence, RI, 1978. · Zbl 0397.34056
[20] C. Cosner, J. Dávila, and S. Martínez, Evolutionary stability of ideal free nonlocal dispersal, J. Biol. Dyn., 6 (2012), pp. 395-405. · Zbl 1447.92275
[21] J. Dockery, V. Hutson, K. Mischaikow, and M. Pernarowski, The evolution of slow dispersal rates: A reaction diffusion model, J. Math. Biol., 37 (1998), pp. 61-83. · Zbl 0921.92021
[22] E. N. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion I. General existence results, Nonlinear Anal., 24 (1995), pp. 337-357. · Zbl 0824.35033
[23] E. N. Dancer, K. Wang, and Z. Zhang, Dynamics of strongly competing systems with many species, Trans. Amer. Math. Soc., 364 (2012), pp. 961-1005. · Zbl 1252.35284
[24] E. B. Fabes, M. V. Safonov, and Y. Yuan, Behavior near the boundary of positive solutions of second order parabolic equations II, Trans. Amer. Math. Soc., 12 (1999), pp. 4947-4961. · Zbl 0976.35031
[25] W. Feng and W. Ruan, Coexistence, permanence, and stability in a three species competition model, Acta Math. Appl. Sin. Engl. Ser., 12 (1996), pp. 443-446. · Zbl 0897.34044
[26] S. D. Fretwell and H. L. Lucas, On territorial behaviour and other factors influencing habitat distribution in birds, Acta Biotheor., 19 (1969), pp. 16-36.
[27] W. Hao, K.-Y. Lam, and Y. Lou, Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions, Discrete Cont. Dyn. Syst. Ser. B, 26 (2021), pp. 367-400. · Zbl 1464.35362
[28] A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theor. Popul. Biol., 24 (1983), pp. 224-251. · Zbl 0526.92025
[29] M. W. Hirsch, H. L. Smith, and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems, J. Dynam. Differential Equations, 13 (2001), pp. 107-131. · Zbl 1129.37306
[30] X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity I, Comm. Pure Appl. Math., 69 (2016), pp. 981-1014. · Zbl 1338.92105
[31] M. Hurley, Lyapunov functions and attractors in arbitrary metric spaces, Proc. Amer. Math. Soc., 126 (1998), pp. 245-256. · Zbl 0891.58025
[32] J. Húska, Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains, J. Differential Equations, 226 (2006), pp. 541-557. · Zbl 1102.35027
[33] J. Húska, P. Poláčik, and M. V. Safonov, Harnack inequalities, exponential separation, and perturbations of principal Floquet bundles for linear parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), pp. 711-739. · Zbl 1139.35046
[34] V. Hutson, K. Mischaikow, and P. Poláčik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001), pp. 501-533. · Zbl 0996.92035
[35] S. B. Hsu, H. L. Smith, and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered banach spaces, Trans. Amer. Math. Soc., 348 (1996), pp. 4083-4094. · Zbl 0860.47033
[36] D. Jiang, Y. Lou, K.-Y. Lam, and Z. Wang, Monotonicity and global dynamics of a nonlocal two-species phytoplankton model, SIAM J. Appl. Math., 79 (2019), pp. 716-742. · Zbl 1421.35384
[37] L. Korobenko and E. Braverman, On evolutionary stability of carrying capacity driven dispersal in competition with regularly diffusing populations, J. Math. Biol., 69 (2014), pp. 1181-1206. · Zbl 1309.92070
[38] K.-Y. Lam and Y. Lou, Evolutionarily stable and convergent stable strategies in reaction-diffusion models for conditional dispersal, Bull. Math. Biol., 76 (2014), pp. 261-291. · Zbl 1402.92348
[39] K.-Y. Lam and Y. Lou, Evolution of conditional dispersal: Evolutionarily stable strategies in spatial models, J. Math. Biol., 68 (2014), pp. 851-877. · Zbl 1293.35140
[40] K.-Y. Lam, Y. Lou, and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 9 (2015), pp. 188-212. · Zbl 1448.92378
[41] K.-Y. Lam and D. Munther, A remark on the global dynamics of competitive systems on ordered Banach spaces, Proc. Amer. Math. Soc., 144 (2016), pp. 1153-1159. · Zbl 1337.47069
[42] K.-Y Lam and W.-M. Ni, Uniqueness and complete dynamics in heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 72 (2012), pp. 1695-1712. · Zbl 1263.35133
[43] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, River Edge, NJ, 1996. · Zbl 0884.35001
[44] J. L. Lions, Théorèms de trace et d’interpolation, I, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3), 13 (1959), pp. 389-403. · Zbl 0097.09502
[45] Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), pp. 400-426. · Zbl 1097.35079
[46] Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), pp. 1319-1342. · Zbl 1307.35144
[47] Y. Lou and D. Munther, Dynamics of a three species competition model, Discrete Contin. Dyn. Syst., 32 (2012), pp. 3099-3131. · Zbl 1255.35046
[48] Y. Lou, X.-Q. Zhao, and P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusion-advection system in heterogeneous environments, J. Math. Pures Appl., 121 (2019), pp. 47-82. · Zbl 1458.35224
[49] Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions, J. Differential Equations, 259 (2015), pp. 141-171. · Zbl 1433.35171
[50] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Mod. Birkhäuser Class., Birkhäuser/Springer, Basel, 1995. · Zbl 0816.35001
[51] F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), pp. 749-772. · Zbl 1076.92052
[52] I. Mazari, Trait selection and rare mutations: The case of large diffusivities, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), pp. 6693-6724. · Zbl 1422.35117
[53] J. Mierczyński, Globally positive solutions of linear parabolic PDEs of second order with Robin boundary conditions, J. Math. Anal. Appl., 209 (1997), pp. 47-59. · Zbl 0877.35052
[54] M. Patra͂o, Morse decomposition of semiflows on topological spaces, J. Dynam. Differential Equations, 19 (2007), pp. 181-198. · Zbl 1127.37020
[55] P. Polác̆ik and I. Teres̆c̆ák, Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations, J. Dynam. Differential Equations, 5 (1993), pp. 279-303. · Zbl 0786.58002
[56] A. B. Potapov, U. E. Schlägel, and M. A. Lewis, Evolutionarily stable diffusive dispersal, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), pp. 3317-3338. · Zbl 1327.92073
[57] K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Universitext, Springer-Verlag, Berlin, 1987. · Zbl 0628.58006
[58] H. L. Smith, Monotone Dynamical Systems, An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr., 41, American Mathematical Society, Providence, RI, 1995. · Zbl 0821.34003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.