×

Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions. (English) Zbl 1433.35171

Summary: We consider a single species model and a two-species competition model in a one-dimensional advective homogeneous environment. One interesting feature in these models concerns the boundary condition at the downstream end, where the species can be exposed to a net loss of individuals, as tuned by a parameter \(b\) which measures the magnitude of the loss. We first determine necessary and sufficient conditions for the persistence of a single species for general value of \(b\), in terms of the critical habitat size and the critical advection rate. Then for the competition model, we assume that two species are identical except their random diffusion rates. We obtain complete understanding when \(0 \leq b < 1\), and our result indicates that larger diffusion rate is selected, extending an earlier work [20] (\(b = 1\)). However, for \(b > 1\) the dynamics can be quite different, and particularly we illustrate that some intermediate diffusion rate may be selected when \(b > \frac{3}{2}\).

MSC:

35K57 Reaction-diffusion equations
35K61 Nonlinear initial, boundary and initial-boundary value problems for nonlinear parabolic equations
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Anholt, B. R., Density dependence resolves the stream drift paradox, Ecology, 76, 2235-2239 (1995)
[2] Ballyk, M.; Dung, L.; Jones, D. A.; Smith, H., Effects of random motility on microbial growth and competition in a flow reactor, SIAM J. Appl. Math., 59, 573-596 (1998) · Zbl 1051.92039
[3] Ballyk, M.; Smith, H., A model of microbial growth in a plug flow reactor with wall attachment, Math. Biosci., 158, 95-126 (1999) · Zbl 0980.92034
[4] Byers, J. E.; Pringle, J. M., Going against the flow: retention, range limits and invasions in advective environments, Mar. Ecol. Prog., 313, 27-41 (2006)
[5] Cantrell, R. S.; Cosner, C., Spatial Ecology via Reaction-Diffusion Equations, Ser. Math. Comput. Biol. (2003), John Wiley and Sons: John Wiley and Sons Chichester, UK · Zbl 1059.92051
[6] Cantrell, R. S.; Cosner, C.; Lou, Y., Evolutionary stability of ideal dispersal strategies in patchy environments, J. Math. Biol., 65, 943-965 (2012) · Zbl 1267.34097
[7] Dahmen, K. A.; Nelson, D. R.; Shnerb, N. M., Life and death near a windy oasis, J. Math. Biol., 41, 1-23 (2000) · Zbl 0999.92038
[8] Desai, M. M.; Nelson, D. R., A quasispecies on a moving oasis, Theor. Popul. Biol., 67, 33-45 (2005) · Zbl 1071.92026
[9] Dockery, J.; Hutson, V.; Mischaikow, K.; Pernarowski, M., The evolution of slow dispersal rates: a reaction-diffusion model, J. Math. Biol., 37, 61-83 (1998) · Zbl 0921.92021
[10] Fretwell, S. D.; Lucas, H. L., On territorial behavior and other factors influencing habitat selection in birds, Acta Biotheretica, 19, 16-36 (1970)
[11] Hastings, A., Can spatial variation alone lead to selection for dispersal?, Theor. Popul. Biol., 24, 244-251 (1983) · Zbl 0526.92025
[12] Hershey, A. E.; Pastor, J.; Peterson, B. J.; Kling, G. W., Stable isotopes resolve the drift paradox for Baetis mayflies in an arctic river, Ecology, 74, 2315-2325 (1993)
[13] Hsu, S. B.; Lou, Y., Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70, 2942-2974 (2010) · Zbl 1210.35265
[14] Huisman, J.; Arrayás, M.; Ebert, U.; Sommeijer, B., How do sinking phytoplankton species manage to persist, Amer. Nat., 159, 245-254 (2002)
[15] Kolokolnikov, T.; Ou, C.; Yuan, Y., Profiles of self-shading, sinking phytoplankton with finite depth, J. Math. Biol., 59, 105-122 (2009) · Zbl 1204.92068
[16] Krein, M. G.; Rutman, M. A., Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk (N. S.), 3, 3-95 (1948) · Zbl 0030.12902
[17] Jones, D.; Le, D.; Smith, H.; Kojouharov, H. V., Bacterial wall attachment in a flow reactor, SIAM J. Appl. Math., 62, 1728-1771 (2002) · Zbl 1017.92034
[18] Jones, D.; Smith, H., Microbial competition for nutrient and wall sites in plug flow, SIAM J. Appl. Math., 60, 1576-1600 (2000) · Zbl 1013.92047
[19] Lam, K.-Y.; Lou, Y.; Lutscher, F., Evolution of dispersal in closed advective environments, J. Biol. Dyn. (2015), in press · Zbl 1448.92378
[20] Lou, Y.; Lutscher, F., Evolution of dispersal in open advective environments, J. Math. Biol., 69, 1319-1342 (2014) · Zbl 1307.35144
[21] Lutscher, F.; Lewis, M. A.; McCauley, E., Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68, 2129-2160 (2006) · Zbl 1296.92211
[22] Lutscher, F.; McCauley, E.; Lewis, M. A., Spatial patterns and coexistence mechanisms in rivers, Theor. Popul. Biol., 71, 267-277 (2007) · Zbl 1124.92050
[23] Lutscher, F.; Pachepsky, E.; Lewis, M. A., The effect of dispersal patterns on stream populations, SIAM Rev., 47, 749-772 (2005) · Zbl 1076.92052
[24] Mckenzie, H. W.; Jin, Y.; Jacobsen, J.; Lewis, M. A., \(R_0\) analysis of a spatiotemporal model for a stream population, SIAM J. Appl. Dyn. Syst., 11, 567-596 (2012) · Zbl 1252.35068
[25] Smith, H., Monotone Dynamical System. An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr., vol. 41 (1995), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0821.34003
[26] Speirs, D. C.; Gurney, W. S.C., Population persistence in rivers and estuaries, Ecology, 82, 1219-1237 (2001)
[27] Vasilyeva, O.; Lutscher, F., Population dynamics in rivers: analysis of steady states, Can. Appl. Math. Q., 18, 439-469 (2011) · Zbl 1229.92081
[28] Waters, T. F., The drift of stream insects, Annu. Rev. Entomol., 17, 253-272 (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.