×

An edge-based smoothed finite element method for visco-elastoplastic analyses of 2D solids using triangular mesh. (English) Zbl 1398.74382

Summary: An edge-based smoothed finite element method (ES-FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the existing standard finite element method (FEM) for the elastic solid mechanics problems. In this paper, the ES-FEM is extended to more complicated visco-elastoplastic analyses using the von-Mises yield function and the Prandtl-Reuss flow rule. The material behavior includes perfect visco-elastoplasticity and visco-elastoplasticity with isotropic and linear kinematic hardening. The formulation shows that the bandwidth of stiffness matrix of the ES-FEM is larger than that of the FEM, and hence the computational cost of the ES-FEM in numerical examples is larger than that of the FEM for the same mesh. However, when the efficiency of computation (computation time for the same accuracy) in terms of a posteriori error estimation is considered, the ES-FEM is more efficient than the FEM.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74D05 Linear constitutive equations for materials with memory
74S30 Other numerical methods in solid mechanics (MSC2010)

Software:

XFEM
Full Text: DOI

References:

[1] Bordas S, Rabczuk T, Nguyen-Xuan H, Nguyen Vinh P, Natarajan S, Bog T, Do Minh Q, Nguyen Vinh H (2009) Strain smoothing in FEM and XFEM. Comput Struct. doi: 10.1016/j.compstruc.2008.07.006
[2] Carstensen C, Klose R (2002) Elastoviscoplastic finite element analysis in 100 lines of matlab. J Numer Math 10: 157–192 · Zbl 1099.74544 · doi:10.1515/JNMA.2002.157
[3] Carstensen C, Funken SA (2001) Averaging technique for FE-a posteriori error control in elasticity. Part 1: conforming FEM. Comput Methods Appl Mech Eng 190: 2483–2498 · Zbl 0981.74063 · doi:10.1016/S0045-7825(00)00248-6
[4] Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin meshfree method. Int J Numer Methods Eng 50: 435–466 · Zbl 1011.74081 · doi:10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
[5] Cui XY, Liu GR, Li GY, Zhao X, Nguyen-Thoi T, Sun GY (2008) A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells. CMES-Comput Model Eng Sci 28(2): 109–125 · Zbl 1232.74099
[6] Dai KY, Liu GR (2007) Free and forced analysis using the smoothed finite element method (SFEM). J Sound Vib 301: 803–820 · doi:10.1016/j.jsv.2006.10.035
[7] Dai KY, Liu GR, Nguyen-Thoi T (2007) An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elements Anal Des 43: 847–860 · doi:10.1016/j.finel.2007.05.009
[8] Dohrmann CR, Heinstein MW, Jung J, Key SW, Witkowski WR (2000) Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes. Int J Numer Methods Eng 47: 1549–1568 · Zbl 0989.74067 · doi:10.1002/(SICI)1097-0207(20000330)47:9<1549::AID-NME842>3.0.CO;2-K
[9] Liu GR (2008) A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. Int J Comput Methods 5(2): 199–236 · Zbl 1222.74044 · doi:10.1142/S0219876208001510
[10] Liu GR, Dai KY, Nguyen-Thoi T (2007) A smoothed finite element method for mechanics problems. Comput Mech 39: 859–877 · Zbl 1169.74047 · doi:10.1007/s00466-006-0075-4
[11] Liu GR, Li Y, Dai KY, Luan MT, Xue W (2006) A Linearly conforming radial point interpolation method for solid mechanics problems. Int J Comput Methods 3(4): 401–428 · Zbl 1198.74120 · doi:10.1142/S0219876206001132
[12] Liu GR, Nguyen-Thoi T, Dai KY, Lam KY (2007) Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Methods Eng 71: 902–930 · Zbl 1194.74432 · doi:10.1002/nme.1968
[13] Liu GR, Nguyen-Thoi T, Lam KY (2008) A novel alpha finite element method ({\(\alpha\)}FEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Comput Methods Appl Mech Eng 197: 3883–3897 · Zbl 1194.74433 · doi:10.1016/j.cma.2008.03.011
[14] Liu GR, Nguyen-Thoi T, Lam KY (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320: 1100–1130 · doi:10.1016/j.jsv.2008.08.027
[15] Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Lam KY (2009) A node-based smoothed finite element method for upper bound solution to solid problems (NS-FEM). Comput Struct 87: 14–26 · doi:10.1016/j.compstruc.2008.09.003
[16] Liu GR, Zhang GY (2008) Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM). Int J Numer Methods Eng 74: 1128–1161 · Zbl 1158.74532 · doi:10.1002/nme.2204
[17] Liu GR, Zhang GY, Dai KY, Wang YY, Zhong ZH, Li GY, Han X (2005) A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems. Int J Comput Methods 2(4): 645–665 · Zbl 1137.74303 · doi:10.1142/S0219876205000661
[18] Liu GR, Zhang GY, Wang YY, Huang HT, Zhong ZH, Li GY, Han X (2007) A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems. Int J Numer Methods Eng 72: 1524–1543 · Zbl 1194.74556 · doi:10.1002/nme.2044
[19] Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas S (2008) A smoothed finite element method for shell analysis. Comput Methods Appl Mech Eng 198: 165–177 · Zbl 1194.74453
[20] Nguyen-Thoi T, Liu GR, Dai KY, Lam KY (2007) Selective smoothed finite element method. Tsinghua Sci Technol 12(5): 497–508 · doi:10.1016/S1007-0214(07)70125-6
[21] Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY (2009) A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements. Int J Numer Methods Eng 78: 324–353 · Zbl 1183.74299 · doi:10.1002/nme.2491
[22] Nguyen-Thoi T, Liu GR, Nguyen-Xuan H, Nguyen-Tran C (2009) Adaptive analysis using the node-based smoothed finite element method (NS-FEM). Commun Numer Methods Eng. doi: 10.1002/cnm.1291 · Zbl 1267.74115
[23] Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H (2009) A face-based smoothed finite element method (FS-FEM) for 3D visco-elastoplastic analyses of solid using tetrahedral mesh. Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2009.07.001 · Zbl 1230.74193
[24] Nguyen-Van H, Mai-Duy N, Tran-Cong T (2008) A smoothed four-node piezoelectric element for analysis of two-dimensional smart structures. CMES-Comput Model Eng Sci 23(3): 209–222 · Zbl 1232.74108
[25] Nguyen-Xuan H, Bordas S, Nguyen-Dang H (2008) Addressing volumetric locking and instabilities by selective integration in smoothed finite elements. Commun Numer Methods Eng 25: 19–34 · Zbl 1169.74044
[26] Nguyen-Xuan H, GR Liu, Nguyen-Thoi T, Nguyen-Tran C (2009) An edge–based smoothed finite element method (ES-FEM) for analysis of two–dimensional piezoelectric structures. Smart Mater Struct 18:065015 (12pp) · Zbl 1267.74115
[27] Nguyen-Xuan H, Liu GR, Thai-Hoang C, Nguyen-Thoi T (2009) An edge-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput Methods Appl Mech Eng (revised) · Zbl 1227.74083
[28] Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF (2008) A smoothed finite element method for plate analysis. Comput Methods Appl Mech Eng 197: 1184–1203 · Zbl 1159.74434 · doi:10.1016/j.cma.2007.10.008
[29] Nguyen-Xuan H, Nguyen-Thoi T (2009) A stabilized smoothed finite element method for free vibration analysis of Mindlin– Reissner plates. Commun Numer Methods Eng 25: 882–906 · Zbl 1172.74047 · doi:10.1002/cnm.1137
[30] Tran Thanh Ngoc, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2009) An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. Int J Numer Methods Eng (revised) · Zbl 1188.74073
[31] Yoo JW, Moran B, Chen JS (2004) Stabilized conforming nodal integration in the natural-element method. Int J Numer Methods Eng 60: 861–890 · Zbl 1060.74677 · doi:10.1002/nme.972
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.