×

Analytical properties for the Fifth Order Camassa-Holm (FOCH) model. (English) Zbl 1497.35417

Summary: This paper devotes to present analysis work on the fifth order Camassa-Holm (FOCH) model which recently proposed by Liu and Qiao. Firstly, we establish the local and global existence of the solution to the FOCH model. Secondly, we study the property of the infinite propagation speed. Finally, we discuss the long time behavior of the support of momentum density with a compactly supported initial data.

MSC:

35Q51 Soliton equations
35G20 Nonlinear higher-order PDEs

References:

[1] Bressan, A.; Constantin, A., Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183, 215-239, 2007 · Zbl 1105.76013
[2] Bressan, A.; Constantin, A., Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5, 1-27, 2007 · Zbl 1139.35378
[3] Camassa, R.; Holm, DD, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664, 1993 · Zbl 0972.35521
[4] Christov, O.; Hakkaev, S., On the Cauchy problem for the periodic b-family of equations and of the non-uniform continuity of Degasperis-Procesi equation, J. Math. Anal. Appl., 360, 47-56, 2009 · Zbl 1178.35081
[5] Coclite, GM; Holden, H.; Karlsen, KH, Well-posedness of higher-order Camassa-Holm equations, J. Diff. Eqs., 246, 929-963, 2009 · Zbl 1186.35003
[6] Coclite, GM; Karlsen, KH, Periodic solutions of the Degasperis-Procesi equation: well-posedness and asymptotics, J. Funct. Anal., 268, 1053-1077, 2015 · Zbl 1316.35081
[7] Coclite, GM; Karlsen, KH; Kwon, YS, Initial-boundary value problems for conservation laws with source terms and the Degasperis-Procesi equation, J. Funct. Anal., 257, 3823-3857, 2009 · Zbl 1180.35348
[8] Constantin, A., Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble), 50, 321-362, 2000 · Zbl 0944.35062
[9] Constantin, A.; Escher, J., Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51, 475-504, 1998 · Zbl 0934.35153
[10] Constantin, A.; Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181, 229-243, 1998 · Zbl 0923.76025
[11] Constantin, A.; Gerdjikov, VS; Ivanov, RI, Inverse scattering transform for the Camassa-Holm equation, Inver. Prob., 22, 2197-2207, 2006 · Zbl 1105.37044
[12] Constantin, A.; McKean, HP, A shallow water equation on the circle, Comm. Pure Appl. Math., 52, 949-982, 1999 · Zbl 0940.35177
[13] Constantin, A.; Strauss, WA, Stability of peakons, Comm. Pure Appl. Math., 53, 603-610, 2000 · Zbl 1049.35149
[14] Degasperis, A.; Holm, DD; Khon, ANI, A new integrable equation with peakon solutions, Teoret. Mat. Fiz., 133, 170-183, 2002
[15] A. Degasperis, M. Procesi, Asymptotic integrability, in: A. Degasperis, G. Gaeta (Eds.), Symmetry and Perturbation Theory, World Scientific, Singapore, 1999, pp. 23-37. · Zbl 0963.35167
[16] Ding, D., Traveling solutions and evolution properties of the higher order Camassa-Holm equation, Nonlinear Anal: Theory Meth. Appl., 152, 1-11, 2017 · Zbl 1356.35079
[17] Ding, D.; Lv, P., Conservative solutions for higher-order Camassa-Holm equations, J. Math. Phys, 51, 072701, 2010 · Zbl 1311.37045
[18] Escher, J.; Yin, Z., Well-posedness, blow-up phenomena, and global solutions for the b-equation, J. Reine Angew. Math., 624, 51-80, 2008 · Zbl 1159.35060
[19] Gui, G.; Liu, Y.; Tian, L., Global existence and blow-up phenomena for the peakon b-family of equations, Indiana Univ. Math. J., 57, 1209-1234, 2008 · Zbl 1170.35369
[20] Han, L.; Cui, W., Infinite propagation speed and asymptotic behavior for a generalized fifth-order Camassa-Holm equation, Appl. Anal., 98, 536-552, 2019 · Zbl 1407.35174
[21] Himonas, AA; Misiołek, G.; Ponce, G.; Zhou, Y., Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys., 271, 511-522, 2007 · Zbl 1142.35078
[22] Holm, DD; Hone, ANW, Nonintegrability of a fifth-order equation with integrable two-body dynamics, Theoret. Math. Phys., 137, 1459-1471, 2003 · Zbl 1178.37104
[23] Hou, Y.; Zhao, P.; Fan, E.; Qiao, Z., Algebro-geometric solutions for the Degasperis-Procesi hierarchy, SIAM J. Math. Anal., 45, 1216-1266, 2013 · Zbl 1291.35286
[24] Jiang, Z.; Ni, L.; Zhou, Y., Wave breaking of the Camassa-Holm equation, J. Nonlinear Sci., 22, 235-245, 2012 · Zbl 1247.35104
[25] Jiang, Z.; Zhou, Y.; Zhu, M., Large time behavior for the support of momentum density of the Camassa-Holm equation, J. Math. Phys, 54, 081503, 2013 · Zbl 1293.35280
[26] Lenells, J., Traveling wave solutions of the Degasperis-Procesi equation, J. Math. Anal. Appl., 306, 72-82, 2005 · Zbl 1068.35163
[27] Lenells, J., Conservation laws of the Camassa-Holm equation, J. Phys. A: Math. Gen., 38, 869-880, 2005 · Zbl 1076.35100
[28] Li, YA; Olver, PJ, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Diff. Eqs., 162, 27-63, 2000 · Zbl 0958.35119
[29] Liu, Q.; Qiao, Z., Fifth order Camassa-Holm model with pseudo-peakons and multi-peakons, Int. J. Non-Linear Mech., 105, 179-185, 2018
[30] Liu, Y.; Yin, Z., Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267, 801-820, 2006 · Zbl 1131.35074
[31] McLachlan, R.; Zhang, X., Well-posedness of modified Camassa-Holm equations, J. Diff. Eqs., 246, 3241-3259, 2009 · Zbl 1203.35079
[32] McKean, HP, Breakdown of a shallow water equation, Asian J. Math., 2, 867-874, 1998 · Zbl 0959.35140
[33] Mustafa, OG, A note on the Degasperis-Procesi equation, J. Nonlinear Math. Phys., 12, 10-14, 2005 · Zbl 1067.35078
[34] Qiao, Z., The Camassa-Holm hierarchy N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold, Comm. Math. Phys., 239, 309-341, 2003 · Zbl 1020.37046
[35] Qiao, Z., Integrable hierarchy, 3 × 3 constrained systems, and parametric solutions, Acta Appl. Math., 83, 199-220, 2004 · Zbl 1078.37045
[36] Qiao, Z.; Li, S., A new integrable hierarchy, parametric solutions, and traveling wave solutions, Math. Phys. Anal. Geom., 7, 289-308, 2004 · Zbl 1068.37052
[37] Reyes, EG, Geometric integrability of the Camassa-Holm equation, Lett. Math. Phys., 59, 117-131, 2002 · Zbl 0997.35081
[38] Tang, H.; Liu, Z., Well-posedness of the modified Camassa-Holm equation in Besov spaces, Z. Angew. Math. Phys., 66, 1559-1580, 2015 · Zbl 1327.35345
[39] Tian, L.; Zhang, P.; Xia, L., Global existence for the higher-order Camassa-Holm shallow water equation, Nonlinear Anal: Theory Meth. Appl., 74, 2468-2474, 2011 · Zbl 1210.35194
[40] Wang, F.; Li, F.; Qiao, Z., Well-posedness and peakons for a higher-order μ-Camassa-Holm equation, Nonlinear Anal., 175, 210-236, 2018 · Zbl 1483.35074
[41] Wang, F.; Li, F.; Qiao, Z., On the Cauchy problem for a higher-order μ-Camassa-Holm equation, Discrete Contin. Dyn. Syst., 38, 4163-4187, 2018 · Zbl 1397.35070
[42] Zhou, Y., Blow-up phenomenon for the integrable Degasperis-Procesi equation, Phys. Lett. A, 328, 157-162, 2004 · Zbl 1134.37361
[43] Zhou, Y., On solutions to the Holm Staley b-family of equations, Nonlinearity, 23, 369-381, 2010 · Zbl 1189.37083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.