×

Integrable hierarchy, \(3\times 3\) constrained systems, and parametric solutions. (English) Zbl 1078.37045

Author’s summary: This paper provides a new integrable hierarchy. The DP equation: \(m_t +um_x +3mu_x =0\), \(m=u-u_{xx}\) , proposed recently by Degasperis and Procesi, is the first member in the negative order hierarchy while the first equation in the positive order hierarchy is: \(m_t =4(m^{-2/3})_x -5(m^{-2/3})_{xxx} +(m^{-2/3})_{xxxxx} .\)
The whole hierarchy is shown Lax-integrable through solving a key matrix equation. To obtain the parametric solutions for the whole hierarchy, we separately discuss the negative order and the positive order hierarchies. For the negative order hierarchy, its \(3\times 3\) Lax pairs and corresponding adjoint representations are cast in Liouville-integrable Hamiltonian canonical systems under the Dirac-Poisson bracket defined on a symplectic submanifold of \({\mathbb R}^{6N}\). Based on the integrability of those finite-dimensional canonical Hamiltonian systems we give the parametric solutions of all equations in the negative order hierarchy.
In particular, we obtain the parametric solution of the DP equation. Moreover, for the positive order hierarchy, we consider a different constraint and process a procedure similar to the negative case to obtain the parametric solutions of the positive order hierarchy. In a special case, we give the parametric solution of the 5th-order PDE \(m_t =4(m^{-2/3})_x -5(m^{-2/3})_{xxx} +(m^{-2/3})_{xxxxx}\). Finally, we discuss the stationary solutions of the 5th-order PDE, which may be included in the parametric solution.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI

References:

[1] Ablowitz, M. J., Kaup, D. J., Newell, A. C. and Segur, H. (1973) Nolinear evolution equations of physical significance, Phys. Rev. Lett.31, 125-127. · Zbl 1243.35143 · doi:10.1103/PhysRevLett.31.125
[2] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H., No article title, Stud. Appl. Math., 53, 249-315 (1974) · Zbl 0408.35068 · doi:10.1002/sapm1974534249
[3] Alber, M. S., Camassa, R., Holm, D. D. and Marsden, J. E. (1994) The geometry of peaked solitons and billiard solutions of a class of integrable PDE’s, Lett. Math. Phys.32, 137-151. · Zbl 0808.35124 · doi:10.1007/BF00739423
[4] Alber, M. S., Camassa, R., Holm, D. D. and Marsden, J. E. (1995) On the link between umbilic geodesics and soliton solutions of nonlinear PDE’s, Proc. Roy. Soc.450, 677-692. · Zbl 0835.35125 · doi:10.1098/rspa.1995.0107
[5] Alber, M. S., Camassa, R., Fedorov, Y. N., Holm, D. D. and Marsden, J. E. (1999) On billiard solutions of nonlinear PDE’s, Phys. Lett. A264, 171-178. · Zbl 0944.37032 · doi:10.1016/S0375-9601(99)00784-7
[6] Alber, M. S., Camassa, R., Fedorov, Y. N., Holm, D. D. and Marsden, J. E. (2001) The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE’s of shallow water and Dym type, Comm. Math. Phys.221, 197-227. · Zbl 1001.37062 · doi:10.1007/PL00005573
[7] Arnol’d, V. I. (1978) Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin. · Zbl 0386.70001
[8] Camassa, R. and Holm, D. D. (1993) An integrable shallow water equation with peaked solitons, Phys. Rev. Lett.71, 1661-1664. · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[9] Cao, C.W. (1989) Nonlinearization of Lax system for the AKNS hierarchy, Sci. China A32, 701-707 (in Chinese); also see English Edition: Nonlinearization of Lax system for the AKNS hierarchy, Sci. Sin. A33(1990), 528-536. · Zbl 0714.58026
[10] Constantin, A. and McKean, H. P. (1999) A shallow water equation on the circle, Comm. Pure Appl. Math.52, 949-982. · Zbl 0940.35177 · doi:10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D
[11] Degasperis, A., Holm, D. D. and Hone, A. N. W. (2002) A new integrable equation with peakon solutions, Theoret. and Math. Phys.133, 1463-1474. · doi:10.1023/A:1021186408422
[12] Degasperis, A. and Procesi, M. (1999) Asymptotic integrability, in A. Degasperis and G. Gaeta (eds), Symmetry and Perturbation Theory, World Scientific, pp. 23-37. · Zbl 0963.35167
[13] Fokas, A. S. and Anderson, R. L. (1982) On the use of isospectral eigenvalue problems for obtaining hereditary symmetries for Hamiltonian systems, J. Math. Phys.23, 1066-1073. · Zbl 0495.58016 · doi:10.1063/1.525495
[14] Fuchssteiner, B. and Fokas, A. S. (1981) Symplectic structures, their Baecklund transformations and hereditaries, Physica D4, 47-66. · Zbl 1194.37114 · doi:10.1016/0167-2789(81)90004-X
[15] Gardner, C. S., Greene, J. M., Kruskal, M. D. and Miura, R. M. (1967) Method for solving the Korteweg—de Vries equation, Phys. Rev. Lett.19, 1095-1097. · Zbl 1103.35360 · doi:10.1103/PhysRevLett.19.1095
[16] Holm, D. D. and Hone, A. N. W. (2002) Note on Peakon bracket, Private communication.
[17] Holm, D. D. and Staley, M. (2002) Private communication.
[18] Kaup, D. J. (1980) On the inverse scattering problem for cubic eigenvalue problems of the class ?xxx + 6Q?x + 6R?= ??, Stud. Appl. Math.62, 189-216. · Zbl 0431.35073 · doi:10.1002/sapm1980623189
[19] Konopelchenko, B. G. and Dubrovsky, V. G. (1984) Some new integrable nonlinear evolution equations in 2 + 1 dimensions, Phys. Lett. A102, 15-17. · doi:10.1016/0375-9601(84)90442-0
[20] Kupershmidt, B. A. (1984) A super Korteweg—de Vries equation: An integrable system, Phys. Lett. A102, 213-215. · doi:10.1016/0375-9601(84)90693-5
[21] Korteweg, D. J. and de Vries, G. (1895) On the change of form long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag.39, 422-443. · JFM 26.0881.02 · doi:10.1080/14786449508620739
[22] Levitan, B. M. and Gasymov, M. G. (1964) Determination of a differential equation by two of its spectra, Russian Math. Surveys19(2), 1-63. · Zbl 0145.10903 · doi:10.1070/RM1964v019n02ABEH001145
[23] Ma, W. X. and Strampp, W. (1994) An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems, Phys. Lett. A185, 277-286. · Zbl 0992.37502 · doi:10.1016/0375-9601(94)90616-5
[24] Marchenko, V. A. (1950) Certain problems in the theory of second-order differential operators, Dokl. Akad. Nauk SSSR72, 457-460 (Russian). · Zbl 0040.34301
[25] Qiao, Z. J. (2001) Generalized r-matrix structure and algebro-geometric solution for integrable system, Rev. Math. Phys.13, 545-586. · Zbl 1025.37034 · doi:10.1142/S0129055X01000752
[26] Qiao, Z. J. (2002a) Finite-Dimensional Integrable System and Nonlinear Evolution Equations, Higher Education Press, P.R. China.
[27] Qiao, Z. J. (2002b) Equations possessing cusp solitons and cusp-like singular traveling wave solutions, Preprint.
[28] Qiao, Z. J. (2002c) A new integrable hierarchy, parametric solutions, and traveling wave solutions, Preprint, to appear in Math. Phys. Anal. Geom.
[29] Qiao, Z. J. (2003) The Camassa—Holm hierarchy, N-dimensional integrable systems, and algebrogeometric solution on a symplectic submanifold, Comm. Math. Phys.239, 309-341. · Zbl 1020.37046 · doi:10.1007/s00220-003-0880-y
[30] Tu, G. Z. (1990) An extension of a theorem on gradients of conserved densities of integrable systems, Northeast. Math. J.6, 26-32. · Zbl 0718.58042
[31] Wadati, M., Ichikawa, Y. H. and Shimizu, T. (1980) Cusp soliton of a new integrable nonlinear evolution equation, Prog. Theor. Phys.64, 1959-1967. · Zbl 1059.37506 · doi:10.1143/PTP.64.1959
[32] Zakharov, V. E. and Shabat, A. B. (1972) Exact theory of two dimensional self focusing and one dimensional self modulation of waves in nonlinear media, Sov. Phys. JETP34, 62-69.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.