×

Riesz transforms on a class of non-doubling manifolds. II. (English) Zbl 07917532

Summary: We consider a class of manifolds \(\mathcal{M}\) obtained by taking the connected sum of a finite number of \(N\)-dimensional Riemannian manifolds of the form \((\mathbb{R}^{n_i},\delta)\times(\mathcal{M}_i, g)\), where \(\mathcal{M}_i\) is a compact manifold, with the product metric. The case of greatest interest is when the Euclidean dimensions \(n_i\) are not all equal. This means that the ends have different “asymptotic dimension,” and implies that the Riemannian manifold \(\mathcal{M}\) is not a doubling space. In the first paper in this series, by the first and third authors, we considered the case where each \(n_i\) is least \(3\). In the present paper, we assume one of the \(n_i\) is equal to \(2\), which is a special and particularly interesting case. Our approach is to construct the low energy resolvent and determine the asymptotics of the resolvent kernel as the energy tends to zero. We show that the resolvent kernel \((\Delta+k^2)^{-1}\) on \(\mathcal{M}\) has an expansion in powers of \(1/\log(1/k)\) as \(k\to0\), which is significantly different from the case where all \(n_i\) are at least \(3\), in which case the expansion is in powers of \(k\). We express the Riesz transform in terms of the resolvent to show that it is bounded on \(L^p(\mathcal{M})\) for \(1<p\leq2\), and unbounded for all \(p>2\).
For Part I see [the authors, Commun. Partial Differ. Equations 44, No. 11, 1072–1099 (2019; Zbl 1440.42055)].

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
47F05 General theory of partial differential operators
58J05 Elliptic equations on manifolds, general theory
58J10 Differential complexes
44A15 Special integral transforms (Legendre, Hilbert, etc.)

Citations:

Zbl 1440.42055

References:

[1] M. ABRAMOWITZ and I. A. STEGUN, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, vol. 55, U.S. Government Printing Office, Washington, D.C., 1964, For sale by the Superinten-dent of Documents. MR0167642 · Zbl 0171.38503
[2] P. AUSCHER, T. COULHON, X. T. DUONG, and S. HOFMANN, Riesz transform on mani-folds and heat kernel regularity, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 6, 911-957 (English, with English and French summaries). https://dx.doi.org/10.1016/j.ansens. 2004.10.003. MR2119242 · Zbl 1086.58013 · doi:10.1016/j.ansens
[3] T. A. BUI, X. T. DUONG, J. LI, and B. D. WICK, Functional calculus of operators with heat kernel bounds on non-doubling manifolds with ends, Indiana Univ. Math. J. 69 (2020), no. 3, 713-747. https://dx.doi.org/10.1512/iumj.2020.69.7905. MR4095173 · Zbl 1439.42015 · doi:10.1512/iumj.2020.69.7905.MR4095173
[4] A. P. CALDERON and A. ZYGMUND, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139. https://dx.doi.org/10.1007/BF02392130. MR52553 · Zbl 0047.10201 · doi:10.1016/j.ansens.2004.10.003
[5] G. CARRON, Riesz transforms on connected sums, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 7, 2329-2343 (English, with English and French summaries). Festival Yves Colin de Verdière. MR2394543 · Zbl 1139.58020 · doi:10.1016/j.ansens.2004.10.003
[6] Riesz transform on manifolds with quadratic curvature decay, Rev. Mat. Iberoam. 33 (2017), no. 3, 749-788. https://dx.doi.org/10.4171/RMI/954. MR3713030 · Zbl 1379.58010 · doi:10.1512/iumj.2020.69.7905
[7] T. COULHON and N. DUNGEY, Riesz transform and perturbation, J. Geom. Anal. 17 (2007), no. 2, 213-226. https://dx.doi.org/10.1007/BF02930721. MR2320162 · Zbl 1122.58014 · doi:10.1007/BF02392130
[8] G. CARRON, T. COULHON, and A. HASSELL, Riesz transform and L p -cohomology for manifolds with Euclidean ends, Duke Math. J. 133 (2006), no. 1, 59-93. https://dx.doi.org/10.1215/ S0012-7094-06-13313-6. MR2219270 · Zbl 1106.58021 · doi:10.1215/S0012-7094-06-13313-6.MR2219270
[9] J. CHEEGER, M. GROMOV, and M. TAYLOR, Finite propagation speed, kernel estimates for func-tions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Ge-ometry 17 (1982), no. 1, 15-53. http://dx.doi.org/10.4310/jdg/1214436699. MR658471 · Zbl 0493.53035 · doi:10.1007/BF02930721
[10] J. CHEEGER and S. T. YAU, A lower bound for the heat kernel, Comm. Pure Appl. Math. 34 (1981), no. 4, 465-480. https://dx.doi.org/10.1002/cpa.3160340404. MR615626 · Zbl 0481.35003 · doi:10.1215/S0012-7094-06-13313-6
[11] S. Y. CHENG, P. LI, and S. T. YAU, On the upper estimate of the heat kernel of a complete Rie-mannian manifold, Amer. J. Math. 103 (1981), no. 5, 1021-1063. https://dx.doi.org/10. 2307/2374257. MR630777 · Zbl 0484.53035 · doi:10.1215/S0012-7094-06-13313-6
[12] T. CHRISTIANSEN and M. ZWORSKI, Harmonic functions of polynomial growth on certain com-plete manifolds, Geom. Funct. Anal. 6 (1996), no. 4, 619-627. https://dx.doi.org/10.1007/ BF02247114. MR1406666 · Zbl 0881.58018 · doi:10.4310/jdg/1214436699
[13] T. COULHON and X. T. DUONG, Riesz transforms for 1 ≤ p ≤ 2, Trans. Amer. Math. Soc. 351 (1999), no. 3, 1151-1169. https://dx.doi.org/10.1090/S0002-9947-99-02090-5 . MR1458299 · doi:10.2307/2374257
[14] B. DEVYVER, A perturbation result for the Riesz transform, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14 (2015), no. 3, 937-964. https://doi.org/10.2422/2036-2145. 201107_010. MR3445205 · doi:10.1007/BF02247114
[15] X. T. DUONG, El M. OUHABAZ, and A. SIKORA, Plancherel-type estimates and sharp spec-tral multipliers, J. Funct. Anal. 196 (2002), no. 2, 443-485. https://dx.doi.org/10.1016/ S0022-1236(02)00009-5 . MR1943098 · doi:10.1090/S0002-9947-99-02090-5
[16] A. GRIGOR ′ YAN, Analytic and geometric background of recurrence and non-explosion of the Brow-nian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 2, 135-249. https://dx.doi.org/10.1090/S0273-0979-99-00776-4 . MR1659871 · doi:10.2422/2036-2145.201107_010
[17] A. GRIGOR ′ YAN, S. ISHIWATA, and L. SALOFF-COSTE, Geometric analysis on manifolds with ends, Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs, Adv. Anal. Geom., vol. 3, De Gruyter, Berlin, [2021] c 2021, pp. 325-343. https://dx.doi.org/10. 1515/9783110700763-011. MR4320094 · Zbl 1029.43006 · doi:10.1016/S0022-1236(02)00009-5
[18] A. GRIGOR ′ YAN and L. SALOFF-COSTE, Heat kernel on connected sums of Riemannian man-ifolds, Math. Res. Lett. 6 (1999), no. 3-4, 307-321. https://dx.doi.org/10.4310/MARL. 1999.v6.n3.a5. MR1713132 · Zbl 0957.58023 · doi:10.4310/MARL
[19] Heat kernel on manifolds with ends, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 5, 1917-1997 (English, with English and French summaries). https://dx.doi.org/10.5802/ aif.2480. MR2573194 · Zbl 1239.58016 · doi:10.5802/aif.2480.MR2573194
[20] Surgery of the Faber-Krahn inequality and applications to heat kernel bounds, Nonlinear Anal. 131 (2016), 243-272. https://dx.doi.org/10.1016/j.na.2015.10. 006. MR3427980 · Zbl 1334.58019 · doi:10.4310/MARL.1999.v6.n3.a5
[21] C. GUILLARMOU and A. HASSELL, Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. I, Math. Ann. 341 (2008), no. 4, 859-896. https:// dx.doi.org/10.1007/s00208-008-0216-5. MR2407330 · Zbl 1141.58017 · doi:10.5802/aif.2480
[22] Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 4, 1553-1610 (English, with English and French summaries). https://dx.doi.org/10.5802/aif.2471. MR2566968 · doi:10.1016/j.na.2015.10.006
[23] A. HASSELL, R. MAZZEO, and R. B. MELROSE, Analytic surgery and the accumulation of eigen-values, Comm. Anal. Geom. 3 (1995), no. 1-2, 115-222. https://dx.doi.org/10.4310/CAG. 1995.v3.n1.a4. MR1362650 · Zbl 0854.58039 · doi:10.1007/s00208-008-0216-5
[24] A. HASSELL and A. SIKORA, Riesz transforms in one dimension, Indiana Univ. Math. J. 58 (2009), no. 2, 823-852. https://dx.doi.org/10.1512/iumj.2009.58.3514. MR2514390 · Zbl 1187.42008 · doi:10.1512/iumj.2009.58.3514.MR2514390
[25] Riesz transforms on a class of non-doubling manifolds, Comm. Partial Differential Equations 44 (2019), no. 11, 1072-1099. https://dx.doi.org/10.1080/03605302.2019. 1611850. MR3995091 · Zbl 1440.42055 · doi:10.5802/aif.2471
[26] L. H ÖRMANDER, The Analysis of Linear Partial Differential Operators. III: Pseudodifferential Operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Math-ematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. https://dx.doi.org/10.1007/ 978-3-540-49938-1. MR781536 · Zbl 0601.35001 · doi:10.1512/iumj.2009.58.3514
[27] R. JIANG, Riesz transform via heat kernel and harmonic functions on non-compact manifolds, Adv. Math. 377 (2021), Paper No. 107464, 50 pp. https://dx.doi.org/10.1016/j.aim.2020. 107464. MR4186007 · doi:10.1080/03605302.2019.1611850
[28] R. JIANG and F. LIN, Riesz transform under perturbations via heat kernel regularity, J. Math. Pures Appl. (9) 133 (2020), 39-65 (English, with English and French summaries). https://dx.doi. org/10.1016/j.matpur.2019.02.009. MR4044674 · Zbl 1433.58023 · doi:10.1007/978-3-540-49938-1
[29] R. MAZZEO and R. B. MELROSE, Pseudodifferential operators on manifolds with fibred bound-aries, Asian J. Math. 2 (1998), no. 4, 833-866, Respectfully dedicate to Professor M. Sato on the occasion of his 70th birthday. https://dx.doi.org/10.4310/AJM.1998.v2.n4. a9. MR1734130 · Zbl 1125.58304 · doi:10.1016/j.aim.2020.107464
[30] R. B. MELROSE, The Atiyah-Patodi-Singer Index Theorem, Research Notes in Mathe-matics, vol. 4, A K Peters, Ltd., Wellesley, MA, 1993. https://dx.doi.org/10.1016/ 0377-0257(93)80040-i. MR1348401 · Zbl 0796.58050 · doi:10.1016/j.matpur.2019.02.009
[31] A. JENSEN, Spectral properties of Schrödinger operators and time-decay of the wave functions: Results in L 2 (R 4 ), J. Math. Anal. Appl. 101 (1984), no. 2, 397-422. https://dx.doi.org/10.1016/ 0022-247X(84)90110-0. MR748579 · doi:10.4310/AJM.1998.v2.n4.a9
[32] J. M ÜLLER and A. STROHMAIER, The theory of Hahn-meromorphic functions, a holomorphic Fredholm theorem, and its applications, Anal. PDE 7 (2014), no. 3, 745-770. https://dx.doi. org/10.2140/apde.2014.7.745. MR3227433 · Zbl 1319.30038 · doi:10.1016/0377-0257(93)80040-i
[33] D. NIX, The resolvent and Riesz transform on connected sums of mani-folds with different asymptotic dimensions, Ph.D. thesis, Australian National University, 2020, https://openresearch-repository.anu.edu.au/items/ 6d2206f7-61f0-45df-ada7-10e091ef704f. · Zbl 0564.35024 · doi:10.1016/0022-247X(84)90110-0
[34] M. RIESZ, Sur les fonctions conjugués, Math. Zeitschrift 27 (1928), 218-244. · JFM 53.0259.02
[35] C.-J. SUNG, L.-F. TAM, and J. WANG, Spaces of harmonic functions, J. London Math. Soc. (2) 61 (2000), no. 3, 789-806. https://dx.doi.org/10.1112/S0024610700008759. MR1766105 · Zbl 0963.31004 · doi:10.1112/S0024610700008759.MR1766105
[36] R. S. STRICHARTZ, Analysis of the Laplacian on the complete Riemannian mani-fold, J. Functional Analysis 52 (1983), no. 1, 48-79. https://dx.doi.org/10.1016/ 0022-1236(83)90090-3. MR705991 · Zbl 0515.58037 · doi:10.1016/0022-1236
[37] M. E. TAYLOR, Partial Differential Equations. II: Qualitative Studies of Linear Equations, Applied Mathematical Sciences, vol. 116, Springer-Verlag, New York, 1996. https://dx.doi.org/10. 1007/978-1-4757-4187-2. MR1395149 · Zbl 0869.35003 · doi:10.1007/978-1-4757-4187-2.MR1395149
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.