×

Riesz transform under perturbations via heat kernel regularity. (English. French summary) Zbl 1433.58023

The main purpose of this paper is to study the behavior of the Riesz transform under metric perturbations in the abstract setting of complete, connected and non-compact \(n\)-dimensional Riemannian manifolds. As a byproduct, the authors also establish stability and instability of gradient estimates of harmonic functions and heat kernels under metric perturbation. Other related results in this paper include the case of degenerate elliptic equations on the whole space and remarks on the conic Laplace operators.

MSC:

58J37 Perturbations of PDEs on manifolds; asymptotics
58J35 Heat and other parabolic equation methods for PDEs on manifolds
58J05 Elliptic equations on manifolds, general theory
35B65 Smoothness and regularity of solutions to PDEs
35K05 Heat equation
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)

References:

[1] Alexopoulos, G., An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Can. J. Math., 44, 691-727 (1992) · Zbl 0792.22005
[2] Avellaneda, M.; Lin, F. H., \(L^p\) bounds on singular integrals in homogenization, Commun. Pure Appl. Math., 44, 897-910 (1991) · Zbl 0761.42008
[3] Avellaneda, M.; Lin, F. H., Homogenization of elliptic problems with \(L^p\) boundary data, Appl. Math. Optim., 15, 93-107 (1987) · Zbl 0644.35034
[4] Avellaneda, M.; Lin, F. H., Compactness methods in the theory of homogenization, Commun. Pure Appl. Math., 40, 803-847 (1987) · Zbl 0632.35018
[5] Auscher, P.; Coulhon, T., Riesz transform on manifolds and Poincaré inequalities, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 4, 531-555 (2005) · Zbl 1116.58023
[6] Auscher, P.; Coulhon, T.; Duong, X. T.; Hofmann, S., Riesz transform on manifolds and heat kernel regularity, Ann. Sci. Éc. Norm. Supér. (4), 37, 911-957 (2004) · Zbl 1086.58013
[7] Auscher, P.; Tchamitchian, P., Square Root Problem for Divergence Operators and Related Topics, Astérisque, vol. 249 (1998), viii+172 pp. · Zbl 0909.35001
[8] Bensoussan, A.; Lions, J. L.; Papanicolaou, G., Asymptotic Analysis for Periodic Structures (2011), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI, xii+398 pp. · Zbl 1229.35001
[9] Blanc, X.; Le Bris, C.; Lions, P. L., On correctors for linear elliptic homogenization in the presence of local defects, Comm. Partial Differential Equations, 43, 965-997 (2018) · Zbl 1423.35092
[10] Blanc, X.; Le Bris, C.; Lions, P. L., On correctors for linear elliptic homogenization in the presence of local defects: the case of advection-diffusion, J. Math. Pures Appl., 124, 106-122 (2019) · Zbl 1416.35092
[11] Boutayeb, S.; Coulhon, T.; Sikora, A., A new approach to pointwise heat kernel upper bounds on doubling metric measure spaces, Adv. Math., 270, 302-374 (2015) · Zbl 1304.35314
[12] Caffarelli, L.; Peral, I., On \(W^{1, p}\) estimates for elliptic equations in divergence form, Commun. Pure Appl. Math., 51, 1-21 (1998) · Zbl 0906.35030
[13] Carron, G., Riesz transforms on connected sums, Festival Yves Colin de Verdière, Ann. Inst. Fourier (Grenoble), 57, 2329-2343 (2007) · Zbl 1139.58020
[14] Carron, G.; Coulhon, T.; Hassell, A., Riesz transform and \(L^p\)-cohomology for manifolds with Euclidean ends, Duke Math. J., 133, 59-93 (2006) · Zbl 1106.58021
[15] Cheng, S. Y.; Yau, S. T., Differential equations on Riemannian manifolds and their geometric applications, Commun. Pure Appl. Math., 28, 3, 333-354 (1975) · Zbl 0312.53031
[16] Coulhon, T.; Dungey, N., Riesz transform and perturbation, J. Geom. Anal., 17, 213-226 (2007) · Zbl 1122.58014
[17] Coulhon, T.; Duong, X. T., Riesz transforms for \(1 \leq p \leq 2\), Trans. Am. Math. Soc., 351, 1151-1169 (1999) · Zbl 0973.58018
[18] Coulhon, T.; Jiang, R.; Koskela, P.; Sikora, A., Gradient estimates for heat kernels and harmonic functions · Zbl 1439.53041
[19] T. Coulhon, R. Jiang, P. Koskela, A. Sikora, Local gradient estimates for heat kernels and harmonic functions, preprint. · Zbl 1439.53041
[20] Croke, C. B.; Karcher, H., Volumes of small balls on open manifolds: lower bounds and examples, Trans. Am. Math. Soc., 309, 753-762 (1988) · Zbl 0709.53033
[21] Devyver, B., A perturbation result for the Riesz transform, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 14, 937-964 (2015) · Zbl 1332.58010
[22] Dungey, N., Heat kernel estimates and Riesz transforms on some Riemannian covering manifolds, Math. Z., 247, 765-794 (2004) · Zbl 1080.58022
[23] Fukushima, M.; Oshima, Y.; Takeda, M., Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in Mathematics, vol. 19 (1994), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin · Zbl 0838.31001
[24] Fabes, E. B.; Kenig, C. E.; Serapioni, R. P., The local regularity of solutions of degenerate elliptic equations, Commun. Partial Differ. Equ., 7, 77-116 (1982) · Zbl 0498.35042
[25] Grigor’yan, A., The heat equation on noncompact Riemannian manifolds, Mat. Sb., 182, 55-87 (1991), (Russian); Math. USSR Sb., 72, 47-77 (1992), translation in · Zbl 0776.58035
[26] Grigor’yan, A.; Saloff-Coste, L., Heat kernel on manifolds with ends, Ann. Inst. Fourier (Grenoble), 59, 1917-1997 (2009) · Zbl 1239.58016
[27] Heinonen, J.; Koskela, P.; Shanmugalingam, N.; Tyson, J., Sobolev Spaces on Metric Measure Spaces. An Approach Based on Upper Gradients, New Mathematical Monographs, vol. 27 (2015), Cambridge University Press: Cambridge University Press Cambridge, xii+434 pp. · Zbl 1332.46001
[28] Jiang, R., The Li-Yau inequality and heat kernels on metric measure spaces, J. Math. Pures Appl. (9), 104, 29-57 (2015) · Zbl 1316.53049
[29] Jiang, R., Riesz transform via heat kernel and harmonic functions on non-compact manifolds · Zbl 1475.58019
[30] Li, H. Q., La transformation de Riesz sur les variétés coniques, J. Funct. Anal., 168, 145-238 (1999) · Zbl 0937.43004
[31] Li, P.; Yau, S. T., On the parabolic kernel of the Schrödinger operator, Acta Math., 156, 153-201 (1986) · Zbl 0611.58045
[32] Li, X. D., Riesz transforms for symmetric diffusion operators on complete Riemannian manifolds, Rev. Mat. Iberoam., 22, 591-648 (2006) · Zbl 1119.53022
[33] Lin, F. H., Asymptotically conic elliptic operators and Liouville type theorems, (Geometric Analysis and the Calculus of Variations (1996), Int. Press: Int. Press Cambridge, MA), 217-238 · Zbl 0937.35035
[34] Saloff-Coste, L., A note on Poincaré, Sobolev, and Harnack inequalities, Int. Math. Res. Not., 2, 27-38 (1992) · Zbl 0769.58054
[35] Saloff-Coste, L., Uniformly elliptic operators on Riemannian manifolds, J. Differ. Geom., 36, 417-450 (1992) · Zbl 0735.58032
[36] Shen, Z. W., Bounds of Riesz transforms on \(L^p\) spaces for second order elliptic operators, Ann. Inst. Fourier (Grenoble), 55, 173-197 (2005) · Zbl 1068.47058
[37] Varopoulos, N. T., Analysis on Lie groups, J. Funct. Anal., 76, 346-410 (1988) · Zbl 0634.22008
[38] Yau, S. T., Harmonic functions on complete Riemannian manifolds, Commun. Pure Appl. Math., 28, 201-228 (1975) · Zbl 0291.31002
[39] Zhang, Q. S., Stability of the Cheng-Yau gradient estimate, Pac. J. Math., 225, 379-398 (2006) · Zbl 1123.58011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.