×

Ratio of critical quantities related to Hawking temperature-entanglement entropy criticality. (English) Zbl 1373.83064

Summary: We revisit the Hawking temperature-entanglement entropy criticality of the \(d\)-dimensional charged AdS black hole with our attention concentrated on the ratio \(\frac{T_c \delta S_{E c}}{Q_c}\). Comparing the results of this paper with those of the ratio \(\frac{T_c S_c}{Q_c}\), one can find both the similarities and differences. These two ratios are independent of the characteristic length scale \(l\) and dependent on the dimension \(d\). These similarities further enhance the relation between the entanglement entropy and the Bekenstein-Hawking entropy. However, the ratio \(\frac{T_c \delta S_{E c}}{Q_c}\) also relies on the size of the spherical entangling region. Moreover, these two ratios take different values even under the same choices of parameters. The differences between these two ratios can be attributed to the peculiar property of the entanglement entropy since the research in this paper is far from the regime where the behavior of the entanglement entropy is dominated by the thermal entropy.

MSC:

83C57 Black holes
80A10 Classical and relativistic thermodynamics
94A17 Measures of information, entropy
81P40 Quantum coherence, entanglement, quantum correlations

References:

[1] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, Article 181602 pp. (2006) · Zbl 1228.83110
[2] Ryu, S.; Takayanagi, T., Aspects of holographic entanglement entropy, J. High Energy Phys., 0608, Article 045 pp. (2006)
[3] Nishioka, T.; Ryu, S.; Takayanagi, T., Holographic entanglement entropy: an overview, J. Phys. A, 42, Article 504008 pp. (2009) · Zbl 1179.81138
[4] Srednicki, M., Entropy and area, Phys. Rev. Lett., 71, 666 (1993) · Zbl 0972.81649
[5] Frolov, V. P.; Novikov, I., Dynamical origin of the entropy of a black hole, Phys. Rev. D, 48, 4545 (1993)
[6] Solodukhin, S. N., Entanglement entropy of black holes, Living Rev. Relativ., 14, 8 (2011) · Zbl 1320.83015
[7] Johnson, C. V., Large \(N\) phase transitions, finite volume, and entanglement entropy, J. High Energy Phys., 1403, Article 047 pp. (2014)
[8] Nguyen, P. H., An equal area law for holographic entanglement entropy of the AdS-RN black hole, J. High Energy Phys., 1512, Article 139 pp. (2015) · Zbl 1388.83491
[9] Spallucci, E.; Smailagic, A., Maxwell’s equal area law for charged Anti-deSitter black holes, Phys. Lett. B, 723, 436-441 (2013) · Zbl 1311.83028
[10] Caceres, E.; Nguyen, P. H.; Pedraza, J. F., Holographic entanglement entropy and the extended phase structure of STU black holes, J. High Energy Phys., 1509, Article 184 pp. (2015) · Zbl 1388.83400
[11] Zeng, X. X.; Liu, X. M.; Li, L. F., Phase structure of the Born-Infeld-anti-de Sitter black holes probed by non-local observables, Eur. Phys. J. C, 76, 616 (2016)
[12] Zeng, X. X.; Zhang, H.; Li, L. F., Phase transition of holographic entanglement entropy in massive gravity, Phys. Lett. B, 756, 170-179 (2016) · Zbl 1400.83040
[13] Zeng, X. X.; Li, L. F., Van der Waals phase transition in the framework of holography, Phys. Lett. B, 764, 100-108 (2017) · Zbl 1369.83057
[14] Mo, J. X.; Li, G. Q.; Lin, Z. T.; Zeng, X. X., Revisiting van der Waals like behavior of \(f(R)\) AdS black holes via the two point correlation function, Nucl. Phys. B, 918, 11-22 (2017) · Zbl 1360.83040
[15] Mo, J. X., An alternative perspective to observe the critical phenomena of dilaton AdS black holes
[16] Kundu, S.; Pedraza, J. F., Aspects of holographic entanglement at finite temperature and chemical potential, J. High Energy Phys., 1608, Article 177 pp. (2016) · Zbl 1390.83118
[17] Sun, Y.; Xu, H.; Zhao, L., Thermodynamics and holographic entanglement entropy for spherical black holes in \(5D\) Gauss-Bonnet gravity, J. High Energy Phys., 1609, Article 060 pp. (2016) · Zbl 1390.83227
[18] Momeni, D.; Myrzakulov, K.; Myrzakulov, R., Fidelity susceptibility as holographic \(P-V\) criticality, Phys. Lett. B, 765, 154-158 (2017)
[19] He, S.; Li, L. F.; Zeng, X. X., Holographic Van der Waals-like phase transition in the Gauss-Bonnet gravity, Nucl. Phys. B, 915, 243-261 (2017) · Zbl 1354.83034
[20] Day, A.; Mahapatra, S.; sarkar, T., Thermodynamics and entanglement entropy with Weyl corrections, Phys. Rev. D, 94, Article 026006 pp. (2016)
[21] Chakraborty, S.; Lochan, K., Black holes: eliminating information or illuminating new physics?, Universe, 3, 55 (2017)
[22] Lochan, K.; Chakraborty, S.; Padmanabhan, T., Information retrieval from black holes, Phys. Rev. D, 94, Article 044056 pp. (2016)
[23] Wu, X., Holographic entanglement entropy and thermodynamic instability of planar \(R\)-charged black holes, Phys. Rev. D, 90, Article 066008 pp. (2014)
[24] Hendi, S. H.; Riazi, N.; Panahiyan, S., Holographical aspects of dyonic black holes: massive gravity generalization · Zbl 1405.83036
[25] Zeng, X. X.; Li, L. F., Holographic phase transition probed by nonlocal observables, Adv. High Energy Phys., 2016, Article 6153435 pp. (2016) · Zbl 1366.83067
[26] Zeng, X. X.; Han, Y. W., Holographic Van der Waals phase transition for a hairy black hole, Adv. High Energy Phys., 2017, Article 2356174 pp. (2017) · Zbl 1370.83063
[27] Liu, X. M.; Shao, H. B.; Zeng, X. X., Van der Waals-like phase transition from holographic entanglement entropy in Lorentz breaking massive gravity · Zbl 1375.83042
[28] Dudal, D.; Mahapatra, S., Confining gauge theories and holographic entanglement entropy with a magnetic field, J. High Energy Phys., 1704, Article 031 pp. (2017) · Zbl 1378.81072
[29] El Moumni, H., Phase transition of AdS black holes with non linear source in the holographic framework, Int. J. Theor. Phys., 56, 554-565 (2017) · Zbl 1358.83055
[30] Zangeneh, M. K.; Ong, Y. C.; Wang, B., Entanglement entropy and complexity for one-dimensional holographic superconductors, Phys. Lett. B, 771, 235-241 (2017) · Zbl 1372.81022
[31] Li, H. L.; Yang, S. Z.; Zu, X. T., Holographic research on phase transitions for a five dimensional AdS black hole with conformally coupled scalar hair, Phys. Lett. B, 764, 310-317 (2017)
[32] Li, H. L.; Feng, Z. W., Holographic Van der Waals phase transition of the higher dimensional electrically charged hairy black hole
[33] Mo, J. X.; Li, G. Q.; Xu, X. B., Universal ratios of critical physical quantities of charged AdS black holes · Zbl 1527.83057
[34] Chamblin, A.; Emparan, R.; Johnson, C. V.; Myers, R. C., Charged AdS black holes and catastrophic holography, Phys. Rev. D, 60, Article 064018 pp. (1999)
[35] Chamblin, A.; Emparan, R.; Johnson, C. V.; Myers, R. C., Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev. D, 60, Article 104026 pp. (1999)
[36] Gunasekaran, S.; Mann, R. B.; Kubiznak, D., Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization, J. High Energy Phys., 1211, Article 110 pp. (2012)
[37] Ma, Y. B.; Zhao, R.; Cao, S., \(Q\)-Φ criticality in the extended phase space of \((n + 1)\)-dimensional RN-AdS black holes, Eur. Phys. J. C, 76, 669 (2016)
[38] Blanco, D. D.; Casini, H.; Hung, L.-Y.; Myers, R. C., Entropy and holography, J. High Energy Phys., 08, Article 060 pp. (2013) · Zbl 1342.83128
[39] Casini, H.; Huerta, M.; Myers, R. C., A derivation of holographic entanglement entropy, J. High Energy Phys., 1105, Article 036 pp. (2011) · Zbl 1296.81073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.