×

Revisiting van der Waals like behavior of \(f(R)\) AdS black holes via the two point correlation function. (English) Zbl 1360.83040

Summary: Van der Waals like behavior of \(f(R)\) AdS black holes is revisited via two point correlation function, which is dual to the geodesic length in the bulk. The equation of motion constrained by the boundary condition is solved numerically and both the effect of boundary region size and \(f(R)\) gravity are probed. Moreover, an analogous specific heat related to \(\delta L\) is introduced. It is shown that the \(T - \delta L\) graphs of \(f(R)\) AdS black holes exhibit reverse van der Waals like behavior just as the \(T - S\) graphs do. Free energy analysis is carried out to determine the first order phase transition temperature \(T_{\ast}\) and the unstable branch in \(T - \delta L\) curve is removed by a bar \(T = T_{\ast}\). It is shown that the first order phase transition temperature is the same at least to the order of \(10^{- 10}\) for different choices of the parameter \(b\) although the values of free energy vary with \(b\). Our result further supports the former finding that charged \(f(R)\) AdS black holes behave much like RN-AdS black holes. We also check the analogous equal area law numerically and find that the relative errors for both the cases \(\theta_0 = 0.1\) and \(\theta_0 = 0.2\) are small enough. The fitting functions between \(\log | T - T_c |\) and \(\log | \delta L - \delta L_c |\) for both cases are also obtained. It is shown that the slope is around 3, implying that the critical exponent is about 2/3. This result is in accordance with those in former literatures of specific heat related to the thermal entropy or entanglement entropy.

MSC:

83C57 Black holes
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C10 Equations of motion in general relativity and gravitational theory
53C22 Geodesics in global differential geometry
82B30 Statistical thermodynamics
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B27 Critical phenomena in equilibrium statistical mechanics
81P40 Quantum coherence, entanglement, quantum correlations
94A17 Measures of information, entropy

References:

[1] Chamblin, A.; Emparan, R.; Johnson, C. V.; Myers, R. C., Charged AdS black holes and catastrophic holography, Phys. Rev. D, 60, Article 064018 pp. (1999)
[2] Chamblin, A.; Emparan, R.; Johnson, C. V.; Myers, R. C., Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev. D, 60, Article 104026 pp. (1999)
[3] Carlip, S.; Vaidya, S., Phase transitions and critical behavior for charged black holes, Class. Quantum Gravity, 20, 3827-3838 (2003) · Zbl 1045.83041
[4] Lu, J. X.; Roy, S.; Xiao, Z., Phase transitions and critical behavior of black branes in canonical ensemble, J. High Energy Phys., 1101, Article 133 pp. (2011) · Zbl 1214.83020
[5] Kubizňák, D.; Mann, R. B., \(P - V\) criticality of charged AdS black holes, J. High Energy Phys., 07, Article 033 pp. (2012) · Zbl 1397.83072
[6] Kubizňák, D.; Mann, R. B.; Teo, M., Black hole chemistry: thermodynamics with lambda · Zbl 1368.83002
[7] Altamirano, N.; Kubizňák, D.; Mann, R. B.; Sherkatghanad, Z., Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume, Galaxies, 2, 89-159 (2014)
[8] Dolan, B. P., Black holes and Boyle’s law-the thermodynamics of the cosmological constant, Mod. Phys. Lett. A, 30, 1540002 (2015) · Zbl 1307.83030
[9] Kubizňák, D.; Mann, R. B., Black hole chemistry, Can. J. Phys., 93, 999-1002 (2015)
[10] Moon, T.; Myung, Y. S.; Son, E. J., \(f(R)\) black holes, Gen. Relativ. Gravit., 43, 3079-3098 (2011) · Zbl 1228.83097
[11] Chen, S.; Liu, X.; Liu, C.; Jing, J., \(P - V\) criticality of AdS black hole in \(f(R)\) gravity, Chin. Phys. Lett., 30, Article 060401 pp. (2013)
[12] Mo, J. X.; Li, G. Q.; Wu, Y. C., A consistent and unified picture for critical phenomena of \(f(R)\) AdS black holes, J. Cosmol. Astropart. Phys., 04, Article 045 pp. (2016)
[13] Mo, J. X.; Li, G. Q., Coexistence curves and molecule number densities of AdS black holes in the reduced parameter space, Phys. Rev. D, 92, Article 024055 pp. (2015)
[14] Li, G. Q.; Mo, J. X., Phase transition and thermodynamic geometry of \(f(R)\) AdS black holes in the grand canonical ensemble, Phys. Rev. D, 93, Article 124021 pp. (2016)
[15] De Felice, A.; Tsujikawa, S., \(f(R)\) theories, Living Rev. Relativ., 13, 3 (2010) · Zbl 1215.83005
[16] Capozziello, S.; De Laurentis, M., Extended theories of gravity, Phys. Rep., 509, 167-321 (2011)
[17] Dombriz, A. de la C.; Dobado, A.; Maroto, A. L., Black holes in \(f(R)\) theories, Phys. Rev. D, 80, Article 124011 pp. (2009) · Zbl 1183.83132
[18] Larranaga, A., A rotating charged black hole solution in \(f(R)\) gravity, Pramana, 78, 697-703 (2012)
[19] Cembranos, J. A.R.; Dombriz, A. de la C.; Romero, P. J., Kerr-Newman black holes in \(f(R)\) theories, Int. J. Geom. Methods Mod. Phys., 11, 1450001 (2014) · Zbl 1282.83028
[20] Sheykhi, A., Higher-dimensional charged \(f(R)\) black holes, Phys. Rev. D, 86, Article 024013 pp. (2012)
[21] Sebastiani, L.; Zerbini, S., Static spherically symmetric solutions in \(F(R)\) gravity, Eur. Phys. J. C, 71, 1591 (2011)
[22] Hendi, S. H., The relation between \(F(R)\) gravity and Einstein-conformally invariant Maxwell source, Phys. Lett. B, 690, 220-223 (2010)
[23] Hendi, S. H.; Momeni, D., Black hole solutions in \(F(R)\) gravity with conformal anomaly, Eur. Phys. J. C, 71, 1823 (2011)
[24] Olmo, G. J.; Garcia, D. R., Palatini \(f(R)\) black holes in nonlinear electrodynamics, Phys. Rev. D, 84, Article 124059 pp. (2011)
[25] Mazharimousavi, S. H.; Halilsoy, M., Black hole solutions in \(f(R)\) gravity coupled with non-linear Yang-Mills field, Phys. Rev. D, 84, Article 064032 pp. (2011)
[26] Myung, Y. S.; Moon, T.; Son, E. J., Stability of \(f(R)\) black holes, Phys. Rev. D, 83, Article 124009 pp. (2011)
[27] Moon, T.; Myung, Y. S.; Son, E. J., Stability analysis of \(f(R)\)-AdS black holes, Eur. Phys. J. C, 71, 1777 (2011)
[28] Myung, Y. S., Instability of rotating black hole in a limited form of \(f(R)\) gravity, Phys. Rev. D, 84, Article 024048 pp. (2011)
[29] Myung, Y. S., Instability of a Kerr black hole in \(f(R)\) gravity, Phys. Rev. D, 88, Article 104017 pp. (2013)
[30] Nojiri, S.; Odintsov, S. D., Instabilities and anti-evaporation of Reissner-Nordström black holes in modified \(F(R)\) gravity, Phys. Lett. B, 735, 376-382 (2014) · Zbl 1380.83159
[31] Nojiri, S.; Odintsov, S. D., Anti-evaporation of Schwarzschild-de Sitter black holes in \(F(R)\) gravity, Class. Quantum Gravity, 30, 125003 (2013) · Zbl 1271.83069
[32] Nojiri, S.; Odintsov, S. D., Unified cosmic history in modified gravity: from \(F(R)\) theory to Lorentz non-invariant models, Phys. Rep., 505, 59-144 (2011)
[33] Maldacena, J. M., Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047
[34] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048
[35] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126
[36] Albash, T.; Johnson, C. V., Holographic studies of entanglement entropy in superconductors, J. High Energy Phys., 1205, Article 079 pp. (2012)
[37] Cai, R. G.; He, S.; Li, L.; Zhang, Y. L., Holographic entanglement entropy in insulator/superconductor transition, J. High Energy Phys., 1207, Article 088 pp. (2012)
[38] Cai, R. G.; Li, L.; Li, L. F.; Su, R. K., Entanglement entropy in holographic P-wave superconductor/insulator model, J. High Energy Phys., 1306, Article 063 pp. (2013)
[39] Li, L. F.; Cai, R. G.; Li, L.; Shen, C., Entanglement entropy in a holographic p-wave superconductor model, Nucl. Phys. B, 894, 15-28 (2015) · Zbl 1328.82057
[40] Cai, R. G.; He, S.; Li, L.; Zhang, Y. L., Holographic entanglement entropy in insulator/superconductor transition, J. High Energy Phys., 1207, Article 088 pp. (2012)
[41] Bai, X.; Lee, B. H.; Li, L.; Sun, J. R.; Zhang, H. Q., Time evolution of entanglement entropy in quenched holographic superconductors, J. High Energy Phys., 040, Article 66 pp. (2015) · Zbl 1388.81705
[42] Cai, R. G.; Li, L.; Li, L. F.; Yang, R. Q., Introduction to holographic superconductor models, Sci. China, Phys. Mech. Astron., 58, Article 060401 pp. (2015)
[43] Ling, Y.; Liu, P.; Niu, C.; Wu, J. P.; Xian, Z. Y., Holographic entanglement entropy close to quantum phase transitions, J. High Energy Phys., 1604, Article 114 pp. (2016) · Zbl 1398.81165
[44] Balasubramanian, V., Thermalization of strongly coupled field theories, Phys. Rev. Lett., 106, Article 191601 pp. (2011)
[45] Balasubramanian, V., Holographic thermalization, Phys. Rev. D, 84, Article 026010 pp. (2011) · Zbl 1280.81105
[46] Galante, D.; Schvellinger, M., Thermalization with a chemical potential from AdS spaces, J. High Energy Phys., 1207, Article 096 pp. (2012)
[47] Caceres, E.; Kundu, A., Holographic thermalization with chemical potential, J. High Energy Phys., 1209, Article 055 pp. (2012)
[48] Zeng, X. X.; Liu, B. W., Holographic thermalization in Gauss-Bonnet gravity, Phys. Lett. B, 726, 481 (2013) · Zbl 1311.83059
[49] Zeng, X. X.; Liu, X. M.; Liu, B. W., Holographic thermalization with a chemical potential in Gauss-Bonnet gravity, J. High Energy Phys., 03, Article 031 pp. (2014)
[50] Zeng, X. X.; Chen, D. Y.; Li, L. F., Holographic thermalization and gravitational collapse in the spacetime dominated by quintessence dark energy, Phys. Rev. D, 91, Article 046005 pp. (2015)
[51] Zeng, X. X.; Liu, X. M.; Liu, B. W., Holographic thermalization in noncommutative geometry, Phys. Lett. B, 744, 48-54 (2015) · Zbl 1330.81134
[52] Zeng, X. X.; Hu, X. Y.; Li, L. F., Effect of phantom dark energy on the holographic thermalization, Chin. Phys. Lett., 34, Article 010401 pp. (2017)
[53] Hu, Y. P.; Zeng, X. X.; Zhang, H. Q., Holographic thermalization and generalized Vaidya-AdS solutions in massive gravity, Phys. Lett. B, 765, 120 (2017) · Zbl 1369.83075
[54] Liu, H.; Suh, S. J., Entanglement tsunami: universal scaling in holographic thermalization, Phys. Rev. Lett., 112, Article 011601 pp. (2014)
[55] Zhang, S. J.; Abdalla, E., Holographic thermalization in charged dilaton anti-de Sitter spacetime, Nucl. Phys. B, 896, 569 (2015) · Zbl 1331.83139
[56] Buchel, A.; Myers, R. C.; Niekerk, A.v., Nonlocal probes of thermalization in holographic quenches with spectral methods, J. High Energy Phys., 02, Article 017 pp. (2015) · Zbl 1388.83092
[57] Craps, B., Gravitational collapse and thermalization in the hard wall model, J. High Energy Phys., 02, Article 120 pp. (2014)
[58] Engelhardt, N.; Hertog, T.; Horowitz, G. T., Holographic signatures of cosmological singularities, Phys. Rev. Lett., 113, Article 121602 pp. (2014)
[59] Engelhardt, N.; Hertog, T.; Horowitz, G. T., Further holographic investigations of Big Bang singularities, J. High Energy Phys., 1507, Article 044 pp. (2015) · Zbl 1388.83544
[60] Johnson, C. V., Large \(N\) phase transitions, finite volume, and entanglement entropy, J. High Energy Phys., 1403, Article 047 pp. (2014)
[61] Caceres, E.; Nguyen, P. H.; Pedraza, J. F., Holographic entanglement entropy and the extended phase structure of STU black holes, J. High Energy Phys., 1509, Article 184 pp. (2015) · Zbl 1388.83400
[62] Nguyen, P. H., An equal area law for holographic entanglement entropy of the AdS-RN black hole, J. High Energy Phys., 1512, Article 139 pp. (2015) · Zbl 1388.83491
[63] Zeng, X. X.; Zhang, H.; Li, L. F., Phase transition of holographic entanglement entropy in massive gravity, Phys. Lett. B, 756, 170-179 (2016) · Zbl 1400.83040
[64] Zeng, X. X.; Li, L. F., Holographic phase transition probed by non-local observables, Adv. High Energy Phys., 2016, 6153435 (2016) · Zbl 1366.83067
[65] He, S.; Li, L. F.; Zeng, X. X., Holographic van der Waals-like phase transition in the Gauss-Bonnet gravity, Nucl. Phys. B, 915, 243 (2017) · Zbl 1354.83034
[66] Dey, A.; Mahapatra, S.; Sarkar, T., Thermodynamics and entanglement entropy with Weyl corrections
[67] Zeng, X. X.; Li, L. F., Van der Waals phase transition in the framework of holography · Zbl 1369.83057
[68] Zeng, X. X.; Liu, X. M.; Li, L. F., Phase structure of the born-infeld-anti-de Sitter black holes probed by non-local observables
[69] Kundu, S.; Pedraza, J. F., Aspects of holographic entanglement at finite temperature and chemical potential · Zbl 1390.83118
[70] Momeni, D.; Myrzakulov, K.; Myrzakulov, R., Fidelity susceptibility as holographic \(P - V\) criticality
[71] Spallucci, E.; Smailagic, A., Maxwell’s equal area law for charged anti-de Sitter black holes, Phys. Lett. B, 723, 436-441 (2013) · Zbl 1311.83028
[72] Balasubramanian, V.; Ross, S. F., Holographic particle detection, Phys. Rev. D, 61, Article 044007 pp. (2000)
[73] Blanco, D. D.; Casini, H.; Hung, L.-Y.; Myers, R. C., Entropy and holography, J. High Energy Phys., 08, Article 060 pp. (2013) · Zbl 1342.83128
[74] Casini, H.; Huerta, M.; Myers, R. C., Towards a derivation of holographic entanglement entropy, J. High Energy Phys., 1105, Article 036 pp. (2011) · Zbl 1296.81073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.