×

Configuration entropy of a rotating quark-gluon plasma from holography. (English) Zbl 1539.81124

Summary: The configuration entropy (CE) provides a measure of the stability of physical systems that are spatially localized. An increase in the CE is associated with an increase in the instability of the system. In this work we apply a recently developed holographic description of a rotating plasma, in order to investigate the behaviour of the CE when the plasma has angular momentum. Considering the holographic dual to the plasma, namely a rotating AdS black hole, the CE is computed at different rotational speeds and temperatures. The result obtained shows not only an increase with the rotational speed \(v\) but, in particular, a divergence of the CE as \(v\) approaches the speed of light: \(v\to1\). We discuss an interpretation for the increase in the CE in terms of the emission of radiation from the black hole and from its dual plasma.

MSC:

81V05 Strong interaction, including quantum chromodynamics
05B30 Other designs, configurations
81V35 Nuclear physics
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
82D10 Statistical mechanics of plasmas
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
03C45 Classification theory, stability, and related concepts in model theory
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
83C57 Black holes

References:

[1] Busza, W.; Rajagopal, K.; van der Schee, W., Heavy ion collisions: the big picture, and the big questions. Annu. Rev. Nucl. Part. Sci., 339-376 (2018)
[2] Liang, Z.-T.; Wang, X.-N., Globally polarized quark-gluon plasma in non-central A+A collisions. Phys. Rev. Lett.. Phys. Rev. Lett. (2006), Erratum
[3] Adamczyk, L., Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid. Nature, 62-65 (2017)
[4] Miranda, A. S.; Morgan, J.; Kandus, A.; Zanchin, V. T., Separable wave equations for gravitoelectromagnetic perturbations of rotating charged black strings. Class. Quantum Gravity, 23 (2015) · Zbl 1329.83191
[5] Jiang, Y.; Liao, J., Pairing phase transitions of matter under rotation. Phys. Rev. Lett., 19 (2016)
[6] McInnes, B., A rotation/magnetism analogy for the quark-gluon plasma. Nucl. Phys. B, 173-190 (2016) · Zbl 1346.81131
[7] Mamani, L. A.H.; Morgan, J.; Miranda, A. S.; Zanchin, V. T., From quasinormal modes of rotating black strings to hydrodynamics of a moving CFT plasma. Phys. Rev. D, 2 (2018)
[8] Wang, X.; Wei, M.; Li, Z.; Huang, M., Quark matter under rotation in the NJL model with vector interaction. Phys. Rev. D, 1 (2019)
[9] Chernodub, M. N., Inhomogeneous confining-deconfining phases in rotating plasmas. Phys. Rev. D, 5 (2021)
[10] Aref’eva, I. Y.; Golubtsova, A. A.; Gourgoulhon, E., Holographic drag force in 5d Kerr-AdS black hole. J. High Energy Phys. (2021)
[11] Chen, X.; Zhang, L.; Li, D.; Hou, D.; Huang, M., Gluodynamics and deconfinement phase transition under rotation from holography. J. High Energy Phys. (2021)
[12] Zhou, J.; Chen, X.; Zhao, Y.-Q.; Ping, J., Thermodynamics of heavy quarkonium in rotating matter from holography. Phys. Rev. D, 12 (2021)
[13] Braguta, V. V.; Kotov, A. Y.; Kuznedelev, D. D.; Roenko, A. A., Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics. Phys. Rev. D, 9 (2021)
[14] Braguta, V. V.; Kotov, A. Y.; Kuznedelev, D. D.; Roenko, A. A., Lattice study of the confinement/deconfinement transition in rotating gluodynamics
[15] Golubtsova, A. A.; Gourgoulhon, E.; Usova, M. K., Heavy quarks in rotating plasma via holography. Nucl. Phys. B (2022) · Zbl 1495.81082
[16] Fujimoto, Y.; Fukushima, K.; Hidaka, Y., Deconfining phase boundary of rapidly rotating hot and dense matter and analysis of moment of inertia. Phys. Lett. B (2021) · Zbl 07408657
[17] Braga, N. R.F.; Faulhaber, L. F.; Junqueira, O. C., Confinement-deconfinement temperature for a rotating quark-gluon plasma. Phys. Rev. D, 10 (2022)
[18] Chen, Y.; Li, D.; Huang, M., Inhomogeneous chiral condensation under rotation in the holographic QCD. Phys. Rev. D, 10 (2022)
[19] Golubtsova, A. A.; Tsegel’nik, N. S., Nuclear the holographic model of \(\mathcal{N} = 4\) SYM rotating quark-gluon plasma (Nov. 2022)
[20] Zhao, Y.-Q.; He, S.; Hou, D.; Li, L.; Li, Z., Phase diagram of holographic thermal dense QCD matter with rotation (Dec. 2022)
[21] Chernodub, M. N.; Goy, V. A.; Molochkov, A. V., Inhomogeneity of rotating gluon plasma and Tolman-Ehrenfest law in imaginary time: lattice results for fast imaginary rotation (Sept. 2022)
[22] Herzog, C. P., A holographic prediction of the deconfinement temperature. Phys. Rev. Lett. (2007)
[23] Ballon Bayona, C. A.; Boschi-Filho, H.; Braga, N. R.F.; Pando Zayas, L. A., On a holographic model for confinement/deconfinement. Phys. Rev. D (2008)
[24] Bravo Gaete, M.; Guajardo, L.; Hassaine, M., A Cardy-like formula for rotating black holes with planar horizon. J. High Energy Phys. (2017) · Zbl 1378.83038
[25] Erices, C.; Martínez, C., Rotating hairy black holes in arbitrary dimensions. Phys. Rev. D (Jan 2018)
[26] Gleiser, M.; Stamatopoulos, N., Entropic measure for localized energy configurations: kinks, bounces, and bubbles. Phys. Lett. B, 304-307 (2012)
[27] Gleiser, M.; Stamatopoulos, N., Information content of spontaneous symmetry breaking. Phys. Rev. D (2012)
[28] Gleiser, M.; Sowinski, D., Information-entropic stability bound for compact objects: application to Q-balls and the Chandrasekhar limit of polytropes. Phys. Lett. B, 272-275 (2013) · Zbl 1331.85003
[29] Braga, N. R.F.; Ferreira, L. F.; a. Da Rocha, R., Thermal dissociation of heavy mesons and configurational entropy. Phys. Lett. B, 16-22 (2018)
[30] Braga, N. R.F.; a. da Rocha, R., AdS/QCD duality and the quarkonia holographic information entropy. Phys. Lett. B, 78-83 (2018)
[31] Braga, N. R.F.; da Mata, R., Configuration entropy for quarkonium in a finite density plasma. Phys. Rev. D, 10 (2020)
[32] Braga, N. R.F.; da Mata, R., Configuration entropy description of charmonium dissociation under the influence of magnetic fields. Phys. Lett. B (2020) · Zbl 1472.81268
[33] Braga, N. R.F.; Ferreira, Y. F.; Ferreira, L. F., Configuration entropy and stability of bottomonium radial excitations in a plasma with magnetic fields. Phys. Rev. D, 11 (2022)
[34] Bernardini, A. E.; Braga, N. R.F.; da Rocha, R., Configurational entropy of glueball states. Phys. Lett. B, 81-85 (2017) · Zbl 1369.81099
[35] Bernardini, A. E.; Da Rocha, R., Informational entropic Regge trajectories of meson families in AdS/QCD. Phys. Rev. D, 12 (2018)
[36] Marinho Rodrigues, D.; da Rocha, R., Configurational entropy and spectroscopy of even-spin glueball resonances in dynamical AdS/QCD. Eur. Phys. J. Plus, 4, 429 (2022)
[37] da Rocha, R., Information entropy in AdS/QCD: mass spectroscopy of isovector mesons. Phys. Rev. D, 10 (2021)
[38] Ferreira, L. F.; da Rocha, R., Tensor mesons, AdS/QCD and information. Eur. Phys. J. C, 5, 375 (2020)
[39] Ferreira, L. F.; Da Rocha, R., Pion family in AdS/QCD: the next generation from configurational entropy. Phys. Rev. D, 8 (2019)
[40] Ferreira, L. F.; da Rocha, R., Nucleons and higher spin baryon resonances: an AdS/QCD configurational entropic incursion. Phys. Rev. D, 10 (2020)
[41] da Rocha, R., Information entropy of nuclear electromagnetic transitions in AdS/QCD (Aug. 2022)
[42] Braga, N. R.F.; Junqueira, O. C., Configuration entropy and confinement/deconfinement transition in holographic QCD. Phys. Lett. B (2021)
[43] Lee, C. O., Configuration entropy and confinement-deconfinement transition in higher-dimensional hard wall model. Phys. Lett. B (2022) · Zbl 1483.83052
[44] Braga, N. R.F.; Junqueira, O. C., Configuration entropy in the soft wall AdS/QCD model and the Wien law. Phys. Lett. B (2021) · Zbl 07414484
[45] Correa, R. A.C.; da Rocha, R.a., Configurational entropy in brane-world models. Eur. Phys. J. C, 11, 522 (2015)
[46] Braga, N. R.F.; da Rocha, R., Configurational entropy of anti-de Sitter black holes. Phys. Lett. B, 386-391 (2017)
[47] Karapetyan, G., Fine-tuning the Color-Glass Condensate with the nuclear configurational entropy. Europhys. Lett., 1 (2017)
[48] Karapetyan, G., The nuclear configurational entropy impact parameter dependence in the Color-Glass Condensate. Europhys. Lett., 3 (2017)
[49] Karapetyan, G., Configurational entropy and \(ρ\) and \(ϕ\) mesons production in QCD. Phys. Lett. B, 201-205 (2018)
[50] Lee, C. O., Configurational entropy of tachyon kinks on unstable Dp-branes. Phys. Lett. B, 197-204 (2019) · Zbl 1411.81164
[51] Bazeia, D.; Moreira, D. C.; Rodrigues, E. I.B., Configurational entropy for skyrmion-like magnetic structures. J. Magn. Magn. Mater., 734-740 (2019)
[52] Braga, N. R.F., Information versus stability in an anti-de Sitter black hole. Phys. Lett. B (2019)
[53] Stephens, M.; Vannah, S.; Gleiser, M., Informational approach to cosmological parameter estimation. Phys. Rev. D, 12 (2020)
[54] Alves, A.; Dias, A. G.; da Silva, R., The 7 · Zbl 1473.81238
[55] da Rocha, R., AdS graviton stars and differential configurational entropy. Phys. Lett. B (2021) · Zbl 1483.85002
[56] R. Casadio, R. da Rocha, P. Meert, L. Tabarroni, W. Barreto, Configurational entropy of black hole quantum cores. · Zbl 1521.83097
[57] Ma, C.-W.; Liu, Y.-P.; Wei, H.; Pu, J.; Cheng, K.; Wang, Y.-T., Determination of neutron-skin thickness using configurational information entropy. Nucl. Sci. Tech., 1, 6 (2022)
[58] Barreto, W.; da Rocha, R., Differential configurational entropy and the gravitational collapse of a kink. Phys. Rev. D, 6 (2022)
[59] Shannon, C. E., A mathematical theory of communication. Bell Syst. Tech. J., 379-423 (1948) · Zbl 1154.94303
[60] Hawking, S. W.; Page, D. N., Thermodynamics of Black Holes in anti-De Sitter Space. Commun. Math. Phys., 577 (1983)
[61] Dudal, D.; Mertens, T. G., Melting of charmonium in a magnetic field from an effective AdS/QCD model. Phys. Rev. D (2015)
[62] Braga, N. R.; Ferreira, L. F., Heavy meson dissociation in a plasma with magnetic fields. Phys. Lett. B, 186-192 (2018)
[63] Braga, N. R.; Ferreira, L. F., Quasinormal modes for quarkonium in a plasma with magnetic fields. Phys. Lett. B, 462-468 (2019)
[64] Braga, N. R.; da Mata, R., Configuration entropy description of charmonium dissociation under the influence of magnetic fields. Phys. Lett. B (2020) · Zbl 1472.81268
[65] Bohra, H.; Dudal, D.; Hajilou, A.; Mahapatra, S., Chiral transition in the probe approximation from an Einstein-Maxwell-dilaton gravity model. Phys. Rev. D (Apr 2021)
[66] Bohra, H.; Dudal, D.; Hajilou, A.; Mahapatra, S., Anisotropic string tensions and inversely magnetic catalyzed deconfinement from a dynamical AdS/QCD model. Phys. Lett. B (2020) · Zbl 1435.81236
[67] Bali, G. S.; Bruckmann, F.; Endrodi, G.; Fodor, Z.; Katz, S. D.; Krieg, S.; Schafer, A.; Szabo, K. K., The QCD phase diagram for external magnetic fields. J. High Energy Phys. (2012) · Zbl 1309.81258
[68] Fraga, E. S.; Palhares, L. F., Deconfinement in the presence of a strong magnetic background: an exercise within the mit bag model. Phys. Rev. D (Jul 2012)
[69] Ballon-Bayona, A., Holographic deconfinement transition in the presence of a magnetic field. J. High Energy Phys. (2013)
[70] Li, D.; Huang, M.; Yang, Y.; Yuan, P.-H., Inverse magnetic catalysis in the soft-wall model of AdS/QCD. J. High Energy Phys. (2017) · Zbl 1377.81235
[71] Ballon-Bayona, A.; Ihl, M.; Shock, J. P.; Zoakos, D., A universal order parameter for Inverse Magnetic Catalysis. J. High Energy Phys. (2017)
[72] Karch, A.; Katz, E.; Son, D. T.; Stephanov, M. A., Linear confinement and AdS/QCD. Phys. Rev. D (2006)
[73] Wang, S.-Y.; Boyanovsky, D.; Ng, K.-W., Direct photons: a nonequilibrium signal of the expanding quark gluon plasma at RHIC energies. Nucl. Phys. A, 819-846 (2002)
[74] Wang, S.-Y.; Boyanovsky, D., Enhanced photon production from quark - gluon plasma: finite lifetime effect. Phys. Rev. D (2001)
[75] Boyanovsky, D.; de Vega, H. J., Are direct photons a clean signal of a thermalized quark gluon plasma?. Phys. Rev. D (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.