×

Riemann solutions of the anti-Chaplygin pressure Aw-Rascle model with friction. (English) Zbl 1509.35232

Summary: The Riemann problem for the anti-Chaplygin pressure Aw-Rascle model with a Coulomb-like friction term is considered. With the use of the substitution of variables, the Riemann solutions with two or three kinds of different structures involving the delta shock wave in two cases are constructed. The delta shock wave may be used to explain the serious traffic jam. The position, strength, and propagation speed of the delta shock wave are obtained by solving the generalized Rankine-Hugoniot relation under an entropy condition. Moreover, the results show that all waves including the contact discontinuity, rarefaction wave, shock wave, and delta shock wave are bent into parabolic shapes and the Riemann solutions are no longer self-similar under the influence of the Coulomb-like friction term.
©2022 American Institute of Physics

MSC:

35Q35 PDEs in connection with fluid mechanics
76L05 Shock waves and blast waves in fluid mechanics
Full Text: DOI

References:

[1] Bento, M. C.; Bertolami, O.; Sen, A. A., Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification, Phys. Rev. D, 66, 043507 (2002) · doi:10.1103/physrevd.66.043507
[2] Bento, M. C.; Bertolami, O.; Sen, A. A., Generalized Chaplygin gas model: Dark energy-dark matter unification and CMBR constraints, Gen. Relativ. Gravitation, 35, 2063-2069 (2003) · Zbl 1044.83025 · doi:10.1023/a:1026207312105
[3] Bilic, N.; Tupper, G. B.; Viollier, R. D., Unification of dark matter and dark energy: The inhomogeneous Chaplygin gas, Phys. Lett. B, 535, 17-21 (2002) · Zbl 0995.83512 · doi:10.1016/S0370-2693(02)01716-1
[4] Chaplygin, S., On gas jets, Sci. Mem. Moscow Univ. Math. Phys., 21, 1-121 (1944)
[5] Von Karman, T., Compressibility effects in aerodynamics, J. Aeronaut. Sci., 8, 337-365 (1941) · JFM 67.0853.01 · doi:10.2514/8.10737
[6] Tsien, H.-S., Two dimensional subsonic flow of compressible fluids, J. Aeronaut. Sci., 6, 399-407 (1939) · JFM 65.1496.05 · doi:10.2514/8.916
[7] Christensen-Dalsgard, J., Lecture Notes on Stellar Structure and Evolution (2004), Aarhus University Press: Aarhus University Press, Aarhus
[8] Karami, K.; Ghaffari, S.; Fehri, J., Interacting polytropic gas model of phantom dark energy in non-flat universe, Eur. Phys. J. C, 64, 85-88 (2009) · doi:10.1140/epjc/s10052-009-1120-1
[9] Mukhopadhyay, U.; Ray, S.; Dutta Choudhury, S. B., Dark energy with polytropic equation-of-state, Mod. Phys. Lett. A, 23, 3187-3198 (2008) · Zbl 1165.83364 · doi:10.1142/s0217732308028533
[10] Viala, Y. P.; Horedt, G. P., Polytropic sheets, cylinders and spheres with negative index, Astron. Astrophys., 33, 195 (1974)
[11] Kamenshchik, A. Y.; Kiefer, C.; Sandhofer, B., Quantum cosmology with a big-brake singularity, Phys. Rev. D, 76, 064032 (2007) · doi:10.1103/physrevd.76.064032
[12] Lipscombe, T. C., Self-gravitating clouds of generalized Chaplygin and modified anti-Chaplygin gases, Phys. Scr., 83, 035901 (2011) · Zbl 1222.83196 · doi:10.1088/0031-8949/83/03/035901
[13] Carter, B., Duality relation between charged elastic strings and superconducting cosmic strings, Phys. Lett. B, 224, 61-66 (1989) · doi:10.1016/0370-2693(89)91051-4
[14] Vilenkin, A., Effect of small-scale structure on the dynamics of cosmic strings, Phys. Rev. D, 41, 3038 (1990) · doi:10.1103/physrevd.41.3038
[15] Li, S., “Delta-shocks for Aw-Rascle model with anti-Chaplygin gas pressure” (unpublished).
[16] Aw, A.; Rascle, M., Resurrection of ‘second order’ models of traffic flow, SIAM J. Appl. Math., 60, 916-938 (2000) · Zbl 0957.35086 · doi:10.1137/s0036139997332099
[17] Cheng, H.; Yang, H., Approaching Chaplygin pressure limit of solutions to the Aw-Rascle model, J. Math. Anal. Appl., 416, 839-854 (2014) · Zbl 1310.35164 · doi:10.1016/j.jmaa.2014.03.010
[18] Li, S.; Wang, Q.; Yang, H., Riemann problem for the Aw-Rascle model of traffic flow with general pressure, Bull. Malays. Math. Sci. Soc., 43, 3757-3775 (2020) · Zbl 1450.35170 · doi:10.1007/s40840-020-00892-0
[19] Pan, L.; Han, X., The Aw-Rascle traffic model with Chaplygin pressure, J. Math. Anal. Appl., 401, 379-387 (2013) · Zbl 1260.35235 · doi:10.1016/j.jmaa.2012.12.022
[20] Sun, M., Interactions of elementary waves for the Aw-Rascle model, SIAM J. Appl. Math., 69, 1542-1558 (2009) · Zbl 1184.35208 · doi:10.1137/080731402
[21] Shen, C.; Sun, M., Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the Aw-Rascle model, J. Differ. Equations, 249, 3024-3051 (2010) · Zbl 1211.35193 · doi:10.1016/j.jde.2010.09.004
[22] Wang, G. D., The Riemann problem for Aw-Rascle traffic flow with negative pressure, Chin. Ann. Math. Ser. A, 35, 73-82 (2014) · Zbl 1313.35219
[23] Savage, S. B.; Hutter, K., The motion of finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177-215 (1989) · Zbl 0659.76044 · doi:10.1017/s0022112089000340
[24] Shen, C.; Sun, M., Exact Riemann solutions for the drift-flux equations of two-phase flow under gravity, J. Differ. Equations, 314, 1-55 (2022) · Zbl 1508.35091 · doi:10.1016/j.jde.2022.01.009
[25] Yin, G.; Chen, J., Existence and stability of Riemann solution to the Aw-Rascle model with friction, Indian J. Pure Appl. Math., 49, 671-688 (2018) · Zbl 1421.35371 · doi:10.1007/s13226-018-0294-3
[26] Zhang, Q., The Riemann solution to the Chaplygin pressure Aw-Rascle model with Coulomb-like friction and its vanishing pressure limit (2016)
[27] Sun, M., The exact Riemann solutions to the generalized Chaplygin gas equations with friction, Commun. Nonlinear Sci., 36, 342-353 (2016) · Zbl 1470.82032 · doi:10.1016/j.cnsns.2015.12.013
[28] Shen, C., The Riemann problem for the pressureless Euler system with Coulomb-like friction term, IMA J. Appl. Math., 81, 76-99 (2016) · Zbl 1336.35281 · doi:10.1093/imamat/hxv028
[29] Shen, C., The Riemann problem for the Chaplygin gas equations with a source term, Z. Angew. Math. Mech., 96, 681-695 (2016) · Zbl 1538.35221 · doi:10.1002/zamm.201500015
[30] Chen, G.-Q.; Liu, H., Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations, SIAM J. Math. Anal., 34, 925-938 (2003) · Zbl 1038.35035 · doi:10.1137/s0036141001399350
[31] Danilov, V. G.; Shelkovich, V. M., Dynamics of propagation and interaction of delta-shock waves in conservation laws systems, J. Differ. Equations, 211, 333-381 (2005) · Zbl 1072.35121 · doi:10.1016/j.jde.2004.12.011
[32] Kranzer, H. C.; Keyfitz, B. L., A strictly hyperbolic system of conservation laws admitting singular shock, Nonlinear Evolution Equations that Change Type (1990), Springer-Verlag: Springer-Verlag, Berlin; New York · Zbl 0718.76071
[33] Panov, E. Y.; Shelkovich, V. M., δ′-shock waves as a new type of solutions to system of conservation laws, J. Differ. Equations, 228, 49-86 (2006) · Zbl 1108.35116 · doi:10.1016/j.jde.2006.04.004
[34] Sheng, W.; Zhang, T., The Riemann problem for the transportation equations in gas dynamics, Mem. Amer. Math. Soc., 137, 654, 1-77 (1999) · Zbl 0913.35082
[35] Tan, D. C.; Zhang, T.; Chang, T.; Zheng, Y. X., Delta shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Differ. Equations, 112, 1-32 (1994) · Zbl 0804.35077 · doi:10.1006/jdeq.1994.1093
[36] Faccanoni, G.; Mangeney, A., Exact solution for granular flows, Int. J. Numer. Anal. Methods Geomech., 37, 1408-1433 (2012) · doi:10.1002/nag.2124
[37] Chang, T.; Hsiao, L., The Riemann Problem and Interaction of Waves in Gas Dynamics (1989), Longman Scientific and Technical: Longman Scientific and Technical, Harlow, UK · Zbl 0698.76078
[38] Smoller, J., Shock Waves and Reaction-Diffusion Equations (1994), Springer-Verlag: Springer-Verlag, New York · Zbl 0807.35002
[39] Danilov, V.; Shelkovich, V., Delta-shock waves type solution of hyperbolic systems of conservation law systems, Q. Appl. Math., 63, 401-427 (2005) · doi:10.1090/s0033-569x-05-00961-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.