×

Single and multi-solitary wave solutions to a class of nonlinear evolution equations. (English) Zbl 1139.35036

Summary: An effective discrimination algorithm is presented to deal with equations arising from physical problems. The aim of the algorithm is to discriminate and derive the single traveling wave solutions of a large class of nonlinear evolution equations. Many examples are given to illustrate the algorithm. At the same time, some factorization technique are presented to construct the traveling wave solutions of nonlinear evolution equations, such as Camassa-Holm equation, Kolmogorov-Petrovskii-Piskunov equation, and so on. Then a direct constructive method called multi-auxiliary equations expansion method is described to derive the multi-solitary wave solutions of nonlinear evolution equations. Finally, a class of novel multi-solitary wave solutions of the \((2+1)\)-dimensional asymmetric version of the Nizhnik-Novikov-Veselov equation are given by three direct methods. The algorithm proposed in this paper can be steadily applied to some other nonlinear problems.

MSC:

35G25 Initial value problems for nonlinear higher-order PDEs
35A25 Other special methods applied to PDEs
Full Text: DOI

References:

[1] Ablowitz, M. J.; Segur, H., Soliton and the Inverse Scattering Transformation (1981), SIAM: SIAM Philadelphia, PA · Zbl 0299.35076
[2] Rogers, C., Bäcklund transformations in soliton theory, (Soliton Theory: A Survey of Results. Soliton Theory: A Survey of Results, Nonlinear Sci. Theory Appl. (1990), Manchester Univ. Press), 97-130 · Zbl 1019.53002
[3] Tang, X. Y.; Lou, S. Y., Extended multilinear variable separation approach and multivalued localized excitations for some \((2 + 1)\)-dimensional integrable systems, J. Math. Phys., 44, 4000 (2003) · Zbl 1062.37084
[4] Liu, C. S., All single traveling wave solutions to \((3 + 1)\)-dimensional Nizhnik-Novikov-Veselov equation, Commun. Theor. Phys. (Beijing), 45, 991-992 (2006)
[5] Rosu, H. C.; Cornejo-Pérez, O., Supersymmetric pairing of kinks for polynomial nonlinearities, Phys. Rev. E, 71, 046607 (2005), (see also arXiv: math-ph/0401040) · Zbl 1110.35322
[6] Estévez, P. G.; Kuru, S.; Negro, J.; Negro, L. M., Travelling wave solutions of two-dimensional Korteweg-de Vries-Burgers and Kadomtsev-Petviashvili equations, J. Phys. A: Math. Gen., 39, 11441-11452 (2006) · Zbl 1106.35078
[7] Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27, 1192 (1971) · Zbl 1168.35423
[8] Weiss, J., The Painlevé property for partial differential equations II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative, J. Math. Phys., 24, 1405-1413 (1983) · Zbl 0531.35069
[9] Ma, W. X.; Fuchssteiner, B., Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation, Internat. J. Non-Linear Mech., 31, 329-338 (1996) · Zbl 0863.35106
[10] Camassa, R.; Holm, D.; Hyman, J., A new integrable shallow water equation, Adv. Appl. Mech., 31, 1-33 (1994) · Zbl 0808.76011
[11] Fuchssteiner, B.; Fokas, A., Symplectic structures, their Backlund transformation and hereditary symmetries, Phys. D, 4, 47-66 (1981) · Zbl 1194.37114
[12] Dullin, H. R.; Gottwald, G. A.; Holm, D., An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87, 194501 (2001)
[13] McKean, H. P., The Liouville correspondence between the Korteweg-de Vries and the Camassa-Holm hierarchies, Commun. Pure Appl. Math., 56, 998-1015 (2003) · Zbl 1037.37030
[14] Brazhnyi, V. A.; Konotop, V. V., Stable and unstable vector dark solitons of coupled nonlinear Schrödinger equations: Application to two-component Bose-Einstein condensates, Phys. Rev. E, 72, 026616 (2005)
[15] Gudkov, V. V., A family of exact travelling wave solutions to nonlinear evolution and wave equations, J. Math. Phys., 38, 9, 4794-4803 (1997) · Zbl 0886.35131
[16] Fornberg, B.; Whitham, G. B., A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. R. Soc. Lond. Ser. A, 289, 373-404 (1978) · Zbl 0384.65049
[17] Degasperis, A.; Procesi, M., Asymptotic integrability, (Degasperis, A.; Gaeta, G., Symmetry and Perturbation Theory. Symmetry and Perturbation Theory, SPT 98, Rome (1999), World Scientific: World Scientific River Edge, NJ), 23-37 · Zbl 0963.35167
[18] Bona, J. L.; Pritchard, W. G.; Scott, L. R., An evaluation of a model equation for water waves, Philos. Trans. R. Soc. Lond. Ser. A, 302, 457-510 (1981) · Zbl 0497.76023
[19] Isidore, N., Exact solutions of a nonlinear dispersive dissipative equation, J. Phys. A: Math. Gen., 29, 3679-3682 (1996) · Zbl 0896.35107
[20] Farlow, S. J., Partial Differential Equations for Scientists and Engineers (1982), Wiley-Interscience: Wiley-Interscience New York · Zbl 0502.90082
[21] Cao, L.; Wang, D. S., Symbolic computation and \(q\)-deformed function solutions of \((2 + 1)\)-dimensional breaking soliton equation, Commun. Theor. Phys., 47, 270 (2007) · Zbl 1355.35158
[22] Hu, X. B., Generalized Hirota’s bilinear equations and their soliton solutions, J. Phys. A: Math. Gen., 26, L465-L471 (1993) · Zbl 0773.35069
[23] Polyanin, A. D.; Zaitsev, V. F., Exact Solutions for Ordinary Differential Equations (1995), CRC Press: CRC Press New York · Zbl 0855.34001
[24] Hunter, J. K.; Saxton, R. A., Dynamics of director fields, SIAM J. Appl. Math., 51, 1498 (1991) · Zbl 0761.35063
[25] Boiti, M.; Leon, J.; Manna, M.; Pempinelli, F., On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions, Inverse Problems, 2, 271-279 (1986) · Zbl 0617.35119
[26] Vekslerchik, V. E., Backlund transformations for the Nizhnik-Novikov-Veselov equation, J. Phys. A: Math. Gen., 37, 5667-5678 (2004) · Zbl 1145.37331
[27] Lenells, J., Classification of all travelling-wave solutions for some nonlinear dispersive equations, Philos. Trans. R. Soc. Lond. Ser. A, 365, 2291-2298 (2007) · Zbl 1152.35464
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.