×

Traveling-wave solutions for Korteweg-de Vries-Burgers equations through factorizations. (English) Zbl 1110.35322

Summary: Traveling-wave solutions of the standard and compound form of Korteweg-de Vries-Burgers equations are found using factorizations of the corresponding reduced ordinary differential equations. The procedure leads to solutions of Bernoulli equations of non-linearity 3/2 and 2 (Riccati), respectively. Introducing the initial conditions through an imaginary phase in the traveling coordinate, we obtain all the solutions previously reported, some of them being corrected here, and showing, at the same time, the presence of interesting details of these solitary waves.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems

References:

[1] Sahu B., and Roychoudhury R. (2003). Czech. J. Phys. 53:517 · doi:10.1023/A:1024657626565
[2] D. Zwillinger, Handbook of Differential Equations (Academic Press, 1992). · Zbl 0741.34002
[3] Canosa J. and Gazdag J. (1977). J. Comput. Phys. 23:393 · Zbl 0356.65107 · doi:10.1016/0021-9991(77)90070-5
[4] Parkes E.J., and Duffy B.R. (1997). Phys. Lett. A 229:217 · Zbl 1043.35521 · doi:10.1016/S0375-9601(97)00193-X
[5] Parkes E.J. (2003). Phys. Lett. A 317:424 · Zbl 1044.35075 · doi:10.1016/j.physleta.2003.09.003
[6] Wang M. (1996). Phys. Lett. A 213:279 · Zbl 0972.35526 · doi:10.1016/0375-9601(96)00103-X
[7] Tie-Cheng X., Hong-Qing Z., Zhen-Ya Y. (2001). Chin. Phys. 10:694 · doi:10.1088/1009-1963/10/8/304
[8] Antar N., Int. J. Eng. Sci. 40, 1179 (2002); I. Bakirtaş and Antar N., Int. J. Eng. Sci. 41, 1163 (2003).
[9] Shukla P.K., and Tagare S.G. (1976). Phys. Lett. A 59:38 · doi:10.1016/0375-9601(76)90345-5
[10] Nakamura Y., Bailung H., and Shukla P.K. (1999). Phys. Rev. Lett. 83:1602 · doi:10.1103/PhysRevLett.83.1602
[11] Kawahara T., Toh S. (1985). Phys. Fluids 28:1636 · doi:10.1063/1.864955
[12] Webb G.M., and Zank G.P., Astophys. J. 396, 549 (1992); Zank G.P., Astrophys. Sp. Sci. 140, 301 (1988).
[13] Muskens O.L., and Dijkhuis J.I., Phys. Rev. Lett. 89, 285504 (2002).
[14] Kivshar Y.S. (1990). Phys. Rev. A 42:1757 · doi:10.1103/PhysRevA.42.1757
[15] E. Schrödinger, Proc. Roy. Irish. Acad. A 46, 9 (1940); Proc. Roy. Irish. Acad. A 47, 53 (1941).
[16] Infeld L. and Hull T.E. (1951). Rev. Mod. Phys. 23:21 · Zbl 0043.38602 · doi:10.1103/RevModPhys.23.21
[17] B. Mielnik and O. Rosas-Ortiz, J. Phys. A 37, 10007 (2004).
[18] Berkovich L.M. (1992). Sov. Math. Dokl. 45:162
[19] Rosu H.C., and O. Cornejo-Pérez, Phys. Rev. E 71, 046607 (2005).
[20] Feng Z. (2002). Phys. Lett. A 293:57 · Zbl 0984.35138 · doi:10.1016/S0375-9601(01)00825-8
[21] Feng Z. (2003). Phys. Lett. A 312:65 · Zbl 1040.35095 · doi:10.1016/S0375-9601(03)00617-0
[22] Feng Z. and Chen G. (2005). Physica A 352:419 · doi:10.1016/j.physa.2004.12.061
[23] Liu C., Liu X. (2004). Phys. Lett. A 331:393 · Zbl 1123.35317 · doi:10.1016/j.physleta.2004.09.033
[24] Demiray H. (2005). Appl. Math. Comp. 162:925 · Zbl 1062.35110 · doi:10.1016/j.amc.2003.12.132
[25] Xue J.-K. (2003). Eur. Phys. J. D 26:211 · doi:10.1140/epjd/e2003-00210-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.