×

Quantum tomography and Schwinger’s picture of quantum mechanics. (English) Zbl 1507.81033

Summary: In this paper the problem of tomographic reconstruction of states is investigated within the so-called Schwinger’s picture of quantum mechanics in which a groupoid is associated with every quantum system. The attention is focussed on spin tomography: in this context the groupoid of interest is the groupoid of pairs over a finite set. In a nutshell, this groupoid is made up of transitions between all possible pairs of outcomes belonging to a finite set. In addition, these transitions possess a partial composition rule, generalizing the notion of groups. The main goal of the paper consists in providing a reconstruction formula for states on the groupoid-algebra associated with the observables of the system. Using the group of bisections of this groupoid, which are special subsets in one-to-one correspondence with the outcomes, a frame is defined and it is used to prove the validity of the tomographic reconstruction. The special case of the set of outcomes being the set of integers modulo \(n\), with \(n\) odd prime, is considered in detail. In this case the subgroup of discrete affine linear transformations, whose graphs are linear subspaces of the groupoid, provides a quorum in close analogy with the continuous case.

MSC:

81P18 Quantum state tomography, quantum state discrimination
81P05 General and philosophical questions in quantum theory
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)

References:

[1] Appleby, D. M.; Bengtsson, I.; Chaturvedi, S., Spectra of phase point operators in odd prime dimensions and the extended Clifford group, J. Math. Phys., 49 (2008) · Zbl 1153.81314 · doi:10.1063/1.2824479
[2] Asorey, M.; Facchi, P.; Man’Ko, V. I.; Marmo, G.; Pascazio, S.; Sudarshan, E. C G., Generalized quantum tomographic maps, Phys. Scr., 85 (2012) · Zbl 1278.81048 · doi:10.1088/0031-8949/85/06/065001
[3] Blackadar, B., Operator algebras: theory of C^*-algebras and von Neumann Algebras, vol 122 (2006), Berlin: Springer, Berlin · Zbl 1092.46003
[4] Busch, P., Informationally complete sets of physical quantities, Int. J. Theor. Phys., 30, 1217-1227 (1991) · doi:10.1007/bf00671008
[5] Cameron, P. J., Permutation Groups (1999), Cambridge: Cambridge University Press, Cambridge · Zbl 0922.20003
[6] Cassinelli, G.; D’Ariano, G. M.; De Vito, E.; Levrero, A., Group theoretical quantum tomography, J. Math. Phys., 41, 7940-7951 (2000) · Zbl 0974.81072 · doi:10.1063/1.1323497
[7] Cencov, N. N., Statistical Decision Rules and Optimal Inference, vol 53 (2000), Providence, RI: American Mathematical Society, Providence, RI
[8] Chen, Z.; Wu, Q.; Zhang, C., Progressing of quantum tomography for quantum information acquisition, J. Electromagn. Anal. Appl., 02, 333-345 (2010) · doi:10.4236/jemaa.2010.25043
[9] Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Marmo, G., Dynamical aspects in the quantizer-dequantizer formalism, Ann. Phys., NY, 385, 769-781 (2017) · Zbl 1372.81064 · doi:10.1016/j.aop.2017.08.025
[10] Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Marmo, G., Schwinger’s picture of quantum mechanics, Int. J. Geom. Methods Mod. Phys., 17, 2050054 (2020) · Zbl 07808335 · doi:10.1142/s0219887820500541
[11] Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Marmo, G., Schwinger’s picture of quantum mechanics: IV. Composition and independence, Int. J. Geom. Methods Mod. Phys., 17, 2050058 (2020) · Zbl 07808339 · doi:10.1142/s0219887820500589
[12] Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Marmo, G.; Schiavone, L.; Zampini, A., Feynman’s propagator in Schwinger’s picture of quantum mechanics, Mod. Phys. Lett. A, 36, 2150187 (2021) · Zbl 1489.81032 · doi:10.1142/s021773232150187x
[13] Ciaglia, F. M.; Ibort, A.; Marmo, G., A gentle introduction to Schwinger’s formulation of quantum mechanics: the groupoid picture, Mod. Phys. Lett. A, 33, 1850122 (2018) · Zbl 1391.81016 · doi:10.1142/s0217732318501225
[14] Ciaglia, F. M.; Jost, J.; Schwachhöfer, L., From the Jordan product to Riemannian geometries on classical and quantum states, Entropy, 22, 637 (2020) · doi:10.3390/e22060637
[15] Ciaglia, F. M.; Cosmo, F. D.; Ibort, A.; Marmo, G.; Schiavone, L., Schwinger’s picture of quantum mechanics: two-groupoids and symmetries, J. Geom. Mech., 13, 333-354 (2021) · Zbl 1484.81053 · doi:10.3934/jgm.2021008
[16] Colin, S.; Corbett, J.; Durt, T.; Gross, D., About SIC POVMs and discrete Wigner distributions, J. Opt. B: Quantum Semiclass. Opt., 7, S778-S785 (2005) · doi:10.1088/1464-4266/7/12/051
[17] Connes, A., Noncommutative Geometry (1994), New York: Academic, New York · Zbl 0818.46076
[18] D’Ariano, G. M.; Maccone, L.; Paini, M., Spin tomography, J. Opt. B: Quantum Semiclass. Opt., 5, 77-84 (2003) · doi:10.1088/1464-4266/5/1/311
[19] D’Ariano, G. M.; Maccone, L.; Paris, M. G A., Orthogonality relations in quantum tomography, Phys. Lett. A, 276, 25-30 (2000) · Zbl 1154.81307 · doi:10.1016/s0375-9601(00)00660-5
[20] D’Ariano, G. M.; Perinotti, P.; Sacchi, M. F., Informationally complete measurements and group representation, J. Opt. B: Quantum Semiclass. Opt., 6, S487 (2004) · doi:10.1088/1464-4266/6/6/005
[21] Daubechies, I., Ten Lectures on Wavelets (1992), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 0776.42018
[22] Dodonov, V. V.; Man’ko, V. I., Positive distribution description for spin states, Phys. Lett. A, 229, 335-339 (1997) · Zbl 1072.81531 · doi:10.1016/s0375-9601(97)00199-0
[23] Faist, P.; Renner, R., Practical and reliable error bars in quantum tomography, Phys. Rev. Lett., 117 (2016) · doi:10.1103/physrevlett.117.010404
[24] Falceto, F.; Ferro, L.; Ibort, A.; Marmo, G., Reduction of Lie-Jordan Banach algebras and quantum states, J. Phys. A: Math. Theor., 46 (2012) · Zbl 1281.46047 · doi:10.1088/1751-8113/46/1/015201
[25] Feynman, R. P.; Brown, L. M., Feynman’s Thesis: A New Approach to Quantum Theory (2005), Singapore: World Scientific, Singapore · Zbl 1122.81007
[26] Flammia, S. T.; Gross, D.; Liu, Y-K; Eisert, J., Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators, New J. Phys., 14 (2012) · Zbl 1448.81075 · doi:10.1088/1367-2630/14/9/095022
[27] Flammia, S. T.; Silberfarb, A.; Caves, C. M., Minimal informationally complete measurements for pure states, Found. Phys., 35, 1985-2006 (2005) · Zbl 1101.81012 · doi:10.1007/s10701-005-8658-z
[28] Folland, G. B., A Course in Abstract Harmonic Analysis (2016), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 1342.43001
[29] García-Pérez, G.; Rossi, M. A C.; Sokolov, B.; Tacchino, F.; Barkoutsos, P. K.; Mazzola, G.; Tavernelli, I.; Maniscalco, S., Learning to measure: adaptive informationally complete generalized measurements for quantum algorithms, PRX Quantum, 2 (2021) · doi:10.1103/prxquantum.2.040342
[30] Gibbons, K. S.; Huffman, M. J.; Wootters, W. K., Discrete phase space based on finite fields, Phys. Rev. A, 70 (2004) · Zbl 1227.81218 · doi:10.1103/physreva.70.062101
[31] Gross, D.; Liu, Y-K; Flammia, S. T.; Becker, S.; Eisert, J., Quantum state tomography via compressed sensing, Phys. Rev. Lett., 105 (2010) · doi:10.1103/physrevlett.105.150401
[32] Hahn, P., The regular representations of measure groupoids, Trans. Am. Math. Soc., 242, 35-72 (1978) · Zbl 0356.46055 · doi:10.1090/s0002-9947-1978-0496797-8
[33] Hou, Z.; Tang, J. F.; Ferrie, C.; Xiang, G. Y.; Li, C. F.; Guo, G. C., Experimental realization of self-guided quantum process tomography, Phys. Rev. A, 101 (2020) · doi:10.1103/physreva.101.022317
[34] Huppert, B., Character Theory of Finite Groups (1998), Berlin: de Gruyter and Co, Berlin · Zbl 0932.20007
[35] Ibort, A.; López-Yela, A., Quantum tomography and the quantum radon transform, Inverse Problems Imaging, 15, 893 (2021) · Zbl 1483.46073 · doi:10.3934/ipi.2021021
[36] Ibort, A.; Man’Ko, V. I.; Marmo, G.; Simoni, A.; Ventriglia, F., An introduction to the tomographic picture of quantum mechanics, Phys. Scr., 79 (2009) · Zbl 1170.81007 · doi:10.1088/0031-8949/79/06/065013
[37] Ibort, A.; Rodríguez, M. A., An Introduction to Groups, Groupoids and Their Representations (2019), Boca Raton: CRC Press, Boca Raton
[38] Ivonovic, I. D., Geometrical description of quantal state determination, J. Phys. A: Math. Gen., 14, 3241-3245 (1981) · doi:10.1088/0305-4470/14/12/019
[39] James, D. F V.; Kwiat, P. G.; Munro, W. J.; White, A. G., Measurement of qubits, Phys. Rev. A, 64 (2001) · doi:10.1103/physreva.64.052312
[40] Kaiser, G., A Friendly Guide to Wavelets, vol 300 (1994), Boston, MA: Birkhäuser, Boston, MA · Zbl 0839.42011
[41] Kirillov, A. A., Geometric Quantization, 139-176 (2001), Berlin: Springer, Berlin
[42] Kirillov, A. A., Lectures on the Orbit Method, vol 64 (2004), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1229.22003
[43] Klimov, A. B.; Mũoz, C.; Romero, J. L., Geometrical approach to the discrete Wigner function in prime power dimensions, J. Phys. A: Math. Gen., 39, 14471-14497 (2006) · Zbl 1148.81310 · doi:10.1088/0305-4470/39/46/016
[44] Klimov, A. B.; Romero, J. L.; Björk, G.; Sánchez-Soto, L. L., Discrete Phase-Space Structures and Mutually Unbiased Bases (2007)
[45] Koopman, B. O., Hamiltonian systems and transformation in Hilbert space, Proc. Natl Acad. Sci. USA, 17, 315 (1931) · Zbl 0002.05701 · doi:10.1073/pnas.17.5.315
[46] Kostant, B., Quantization and Unitary Representations, 87-208 (1970), Berlin: Springer, Berlin · Zbl 0223.53028
[47] Leonhardt, U., Measuring the Quantum State of Light (1997), Cambridge: Cambridge University Press, Cambridge
[48] Lieb, E. H.; Yngvason, J., The physics and mathematics of the second law of thermodynamics, Phys. Rep., 310, 1-96 (1999) · Zbl 1027.80504 · doi:10.1016/s0370-1573(98)00082-9
[49] Mackenzie, K. C H., General Theory of Lie Groupoids and Lie Algebroids (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 1078.58011
[50] Man’Ko, M. A.; Man’Ko, V. I.; Marmo, G.; Simoni, A.; Ventriglia, F., Introduction to tomography classical and quantum, Il Nuovo Cimento C, 36, 163-182 (2013) · doi:10.1393/ncc/i2013-11530-6
[51] Man’ko, O. V.; Man’ko, V. I.; Marmo, G., Star-product of generalized Wigner-Weyl symbols on SU(2) group, deformations, and tomographic probability distribution, Phys. Scr., 62, 446 (2000) · doi:10.1238/physica.regular.062a00446
[52] Man’ko, V. I.; Man’ko, O. V., Spin state tomography, J. Exp. Theor. Phys., 85, 430-434 (1997) · doi:10.1134/1.558326
[53] Man’ko, V. I.; Marmo, G.; Simoni, A.; Stern, A.; Sudarshan, E. C G.; Ventriglia, F., On the meaning and interpretation of tomography in abstract Hilbert spaces, Phys. Lett. A, 351, 1-12 (2006) · Zbl 1234.81029 · doi:10.1016/j.physleta.2005.10.063
[54] Marmo, G.; Michor, P. W.; Neretin, Y. A., The Lagrangian Radon transform and the Weil representation, J. Fourier Anal. Appl., 20, 321-361 (2014) · Zbl 1310.44005 · doi:10.1007/s00041-013-9315-0
[55] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 1049.81015
[56] Paris, M.; Rehacek, J., Quantum State Estimation (2004), Berlin: Springer, Berlin · Zbl 1084.81004
[57] Pauli, W., Encyclopedia of Physics, vol V (1958), Berlin: Springer, Berlin
[58] Planat, M.; Gedik, Z., Magic informationally complete POVMs with permutations, R. Soc. Open Sci., 4 (2017) · doi:10.1098/rsos.170387
[59] Řeháček, J.; Englert, B-G; Kaszlikowski, D., Minimal qubit tomography, Phys. Rev. A, 70 (2004) · doi:10.1103/physreva.70.052321
[60] Reichenbach, H., Philosophic Foundations of Quantum Mechanics (1998), New York: Courier Corporation, New York
[61] Renes, J. M.; Blume-Kohout, R.; Scott, A. J.; Caves, C. M., Symmetric informationally complete quantum measurements, J. Math. Phys., 45, 2171-2180 (2004) · Zbl 1071.81015 · doi:10.1063/1.1737053
[62] Sainz, I.; Roa, L.; Klimov, A. B., Unbiased nonorthogonal bases for tomographic reconstruction, Phys. Rev. A, 81 (2010) · doi:10.1103/physreva.81.052114
[63] Souriau, J. M., Quantification géométrique, Commun. Math. Phys., 1, 374-398 (1966) · Zbl 1148.81307
[64] von Neumann, J., Thermodynamik quantenmechanischer gesamtheiten, 273-291 (1927) · JFM 53.0849.02
[65] Wang, J.; Scholz, V. B.; Renner, R., Confidence polytopes in quantum state tomography, Phys. Rev. Lett., 122 (2019) · doi:10.1103/physrevlett.122.190401
[66] Weyl, H., Quantenmechanik und gruppentheorie, Z. Phys., 46, 1-46 (1927) · JFM 53.0848.02 · doi:10.1007/bf02055756
[67] Wigner, E. P., On the quantum correction for thermodynamic equilibrium, Part I: Physical Chemistry. Part II: Solid State Physics, 110-120 (1997), Berlin: Springer, Berlin
[68] Wootters, W. K.; Fields, B. D., Optimal state-determination by mutually unbiased measurements, Ann. Phys., NY, 191, 363-381 (1989) · doi:10.1016/0003-4916(89)90322-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.