×

The groupoidal picture of quantum mechanics. (English) Zbl 1540.81072

The purpose of this paper is to give a groupoid interpretation of quantum mechanics. The authors consider a groupoid as the basic mathematical ingredient in the description of a physical system. First, the authors review the relevant notions of the theory of measure groupoids and their link with quantum mechanical systems. Then, they give a construction of the von Neumann algebra of a measure groupoid. The quantum-to-classical transition is interpreted in the groupoid framework. Feynman’s sum over histories interpretation is also described in terms of groupoids.

MSC:

81R15 Operator algebra methods applied to problems in quantum theory
85A04 General questions in astronomy and astrophysics
18B40 Groupoids, semigroupoids, semigroups, groups (viewed as categories)
46L10 General theory of von Neumann algebras
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
Full Text: DOI

References:

[1] Abramsky, S.; Coecke, B., Categorical quantum mechanics, 261-323 · Zbl 1273.81014
[2] Araki, H., Mathematical Theory of Quantum Fields (1999), Oxford University Press: Oxford University Press New York · Zbl 0998.81501
[3] Birkhoff, G.; von Neumann, J., The logic of quantum mechanics. Ann. Math., 4, 823-843 (1936) · JFM 62.1061.04
[4] Bratteli, O.; Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics I (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0905.46046
[5] Bratteli, O.; Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics II (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0905.46046
[6] Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Marmo, G., Evolution of classical and quantum states in the groupoid picture of quantum mechanics. Entropy, 22 (2020)
[7] Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Marmo, G., Schwinger’s picture of quantum mechanics. Int. J. Geom. Methods Mod. Phys., 04 (2020) · Zbl 07808335
[8] Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Marmo, G., Schwinger’s picture of quantum mechanics IV: composition and independence. Int. J. Geom. Methods Mod. Phys., 04 (2020) · Zbl 07808339
[9] Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Marmo, G.; Schiavone, L., Schwinger’s picture of quantum mechanics: 2-groupoids and symmetries. J. Geom. Mech., 3, 333-354 (2021) · Zbl 1484.81053
[10] Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Marmo, G.; Schiavone, L.; Zampini, A., A quantum route to the classical Lagrangian formalism. Mod. Phys. Lett. A, 15 (2021) · Zbl 1467.81011
[11] Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Marmo, G.; Schiavone, L.; Zampini, A., Feynman’s propagator in Schwinger’s picture of quantum mechanics. Mod. Phys. Lett. A, 26 (2021) · Zbl 1489.81032
[12] Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Marmo, G.; Schiavone, L.; Zampini, A., Causality in Schwinger’s picture of quantum mechanics. Entropy, 01 (2022)
[13] Ciaglia, F. M.; Ibort, A.; Marmo, G., A gentle introduction to Schwinger’s formulation of quantum mechanics: the groupoid picture. Mod. Phys. Lett. A, 20 (2018) · Zbl 1391.81016
[14] Ciaglia, F. M.; Ibort, A.; Marmo, G., Schwinger’s picture of quantum mechanics I: groupoids. Int. J. Geom. Methods Mod. Phys., 08 (2019) · Zbl 1421.81049
[15] Ciaglia, F. M.; Ibort, A.; Marmo, G., Schwinger’s picture of quantum mechanics II: algebras and observables. Int. J. Geom. Methods Mod. Phys., 09 (2019) · Zbl 07804178
[16] Ciaglia, F. M.; Ibort, A.; Marmo, G., Schwinger’s picture of quantum mechanics III: the statistical interpretation. Int. J. Geom. Methods Mod. Phys., 11 (2019) · Zbl 07805036
[17] Ciaglia, F. M.; Di Cosmo, F.; Facchi, P.; Ibort, A.; Konderak, A.; Marmo, G., Groupoid and algebra of the infinite quantum spin chain. J. Geom. Phys. (2023) · Zbl 1530.81095
[18] Coecke, B.; Kissinger, A., Picturing Quantum Processes. A First Course in Quantum Theory and Diagrammatic Reasoning (2017), Cambridge University Press · Zbl 1405.81001
[19] Connes, A., Sur la theorie noncommutative de l’integration, 19-143 · Zbl 0412.46053
[20] Connes, A., Noncommutative Geometry (1994), Academic Press · Zbl 0818.46076
[21] Crainic, M.; Loja Fernandes, R., Integrability of Lie brackets. Ann. Math., 575-620 (2003) · Zbl 1037.22003
[22] Dirac, P. A.M., The Lagrangian in quantum mechanics. Phys. Z. Sowjetunion, 1 (1933), also available as an appendix · Zbl 0006.32906
[23] Dirac, P. A.M., Principles of Quantum Mechanics (1958), Oxford University Press · Zbl 0080.22005
[24] Dixmier, J., Algebres quasi-unitaires. Comment. Math. Helv., 275-322 (1952) · Zbl 0047.35601
[25] Feynman, R. P., Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys., 367-387 (1948) · Zbl 1371.81126
[26] Feynman, R. P., Feynman’s Thesis: A New Approach to Quantum Theory (2005), World Scientific, reprinted from R.P. Feynman, The Principle of Least Action in Quantum Mechanics · Zbl 1122.81007
[27] Fremlin, D. H., Measure Theory, vol. 2 (2010), Lulu Press, Web source
[28] Fritz, T., A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. Adv. Math. (2020) · Zbl 1505.60004
[29] Fritz, T.; Gonda, T.; Perrone, P., De Finetti’s theorem in categorical probability (2021)
[30] Fritz, T.; Gonda, T.; Perrone, P.; Rischel, E. F., Representable Markov categories and comparison of statistical experiments in categorical probability (2020)
[31] Glimm, J., Families of induced representations. Pac. J. Math., 3, 885-911 (1962), pjm/1103036306 · Zbl 0121.10303
[32] Glimm, J.; Jaffe, A., Quantum: A Functional Integral Point of View (1987), Springer-Verlag: Springer-Verlag Berlin
[33] Haag, R., Local Quantum Physics: Fields, Particles, Algebras (1996), Springer-Verlag New York Inc. · Zbl 0857.46057
[34] Haag, R.; Kastler, D., An algebraic approach to quantum field theory. J. Math. Phys., 7, 848-861 (1964) · Zbl 0139.46003
[35] Hahn, P., Haar measure for measure groupoids. Trans. Am. Math. Soc., 1-33 (1978) · Zbl 0343.43003
[36] Hahn, P., The regular representation of measure groupoids. Trans. Am. Math. Soc., 35-72 (1978) · Zbl 0356.46055
[37] Halmos, P. R., Measure Theory (1950), Springer: Springer New York, NY · Zbl 0040.16802
[38] Heisenberg, W., Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys., 879-893 (1925) · JFM 51.0728.07
[39] Higgins, P. J., Categories and Groupoids (1971), Van Nostrand Reinhold, Online source · Zbl 0226.20054
[40] M. Del Hoyo, R.L. Fernandes, Riemannian metrics on Lie groupoids, J. Reine Angew. Math. 2018 (735), 143-173. · Zbl 1385.53076
[41] A. Ibort, M. Jiménez-Vázquez, A Lagrangian description of the qubit, 2023, in preparation.
[42] Ibort, A.; Rodriguez, M. A., An Introduction to the Theory of Groups, Groupoids and Their Representations (2019), CRC
[43] Jauch, J. M., Foundations of Quantum Mechanics (1968), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0166.23301
[44] Kastler, D., On A. Connes’ noncommutative integration theory. Commun. Math. Phys., 99-120 (1982) · Zbl 0529.46047
[45] Landsman, N. P., Mathematical Topics Between Classical and Quantum Mechanics (1998), Springer: Springer New York, NY
[46] Landsman, N. P., Operator algebras and Poisson manifolds associated to groupoids. Commun. Math. Phys., 97-116 (2001) · Zbl 1013.46060
[47] Landsman, N. P., Lie groupoids and Lie algebroids in physics and noncommutative geometry. J. Geom. Phys., 1, 24-54 (2006) · Zbl 1088.58009
[48] Mackenzie, K. C., General Theory of Lie Groupoids and Lie Algebroids (2005), Cambridge University Press · Zbl 1078.58011
[49] Mackey, G. W., Ergodic theory and virtual groups. Math. Ann., 187-207 (1966) · Zbl 0178.38802
[50] Mackey, G. W., Induced Representations of Groups and Quantum Mechanics (1968), W.A. Benjamin, Inc.: W.A. Benjamin, Inc. New York-Amsterdam · Zbl 0174.28101
[51] Marmo, G.; Saletan, E. J.; Simoni, A.; Vitale, B., Dynamical Systems: A Differential Geometric Approach to Symmetry and Reduction (1985), Wiley · Zbl 0592.58031
[52] Murray, F. J.; von Neumann, J., On rings of operators. Ann. Math., 1, 116-229 (1936) · JFM 62.0449.03
[53] Parzygnat, A. J., Inverses, disintegrations, and Bayesian inversion in quantum Markov categories (2020)
[54] Ramsey, A., Virtual groups and group actions. Adv. Math., 3, 253-322 (1971) · Zbl 0216.14902
[55] Reed, M.; Simon, B., Methods of Modern Mathematical Physics I: Functional Analysis (1980), Academic Press: Academic Press London · Zbl 0459.46001
[56] Renault, J., A Groupoid Approach to \(C^\ast \)-Algebras (1980), Springer-Verlag Berlin Heidelberg · Zbl 0433.46049
[57] Schrödinger, E., An undulatory theory of the mechanics of atoms and molecules. Phys. Rev., 06, 1049-1070 (1926) · JFM 52.0965.07
[58] Schweber, S. S., The sources of Schwinger’s Green’s functions. Proc. Natl. Acad. Sci., 22, 7783-7788 (2005) · Zbl 1135.81310
[59] Schwinger, J., The algebra of microscopic measurement. Proc. Natl. Acad. Sci. USA, 10, 1542-1553 (1959) · Zbl 0122.22303
[60] Schwinger, J., Quantum Kinematics and Dynamics. Advanced Book Classics, Frontiers in Physics Series (1991), Perseus Books Group
[61] Schwinger, J., Quantum Mechanics, Symbolism of Atomic Measurements (2001), Springer-Verlag: Springer-Verlag Berlin · Zbl 1009.81001
[62] Segal, I. E., Postulates for general quantum mechanics. Ann. Math., 4, 930-948 (1947) · Zbl 0034.06602
[63] Takesaki, M., Theory of Operator Algebra I (2002), Springer-Verlag: Springer-Verlag Berlin
[64] Takesaki, M., Theory of Operator Algebra II (2003), Springer-Verlag: Springer-Verlag Berlin · Zbl 1059.46031
[65] von Neumann, J., On rings of operators. Reduction theory. Ann. Math., 2, 401-485 (1949) · Zbl 0034.06102
[66] von Neumann, J., Mathematical Foundations of Quantum Mechanics (1955), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0064.21503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.