×

Null fluid collapse in Rastall theory of gravity. (English) Zbl 07765110

Summary: A Vaidya spacetime is considered for gravitational collapse of a type II fluid in the context of the Rastall theory of gravity. For a linear equation of state for the fluid profiles, the conditions under which the dynamical evolution of the collapse can give rise to the formation of a naked singularity are examined. It is shown that depending on the model parameters, strong curvature, naked singularities would arise as exact solutions to the Rastall’s field equations. The allowed values of these parameters satisfy certain conditions on the physical reliability, nakedness, and the curvature strength of the singularity. It turns out that Rastall gravity, in comparison to general relativity, provides a wider class of physically reasonable spacetimes that admit both locally and globally naked singularities.
© 2020 The Authors. Published by Wiley-VCH GmbH

MSC:

83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] S.Hawking, R.Penrose, The Nature of Space and Time, Princeton University Press, Princeton, Princeton, NJ, USA1996. · Zbl 0962.83500
[2] S. W.Hawking, G. F. R.Ellis, The Large Scale Structure of Space‐Time, Cambridge University Press, Cambridge, UK2011.
[3] R.Penrose, Riv. Nuovo Cim.1969, 1, 252, [Gen. Relativ. Gravitation2002, 34, 1141].
[4] R.Wald, Black Holes and Relativistic Stars, University of Chicago Press, Chicago, IL, USA1998.
[5] R.Wald, General Relativity, University of Chicago Press, Chicago, IL, USA1984. · Zbl 0549.53001
[6] C. J. S.Clarke, Classical Quantum Gravity1994, 11, 1375. · Zbl 0808.53067
[7] R. M.Wald, in Black Holes, Gravitational Radiation and the Universe: Essays in Honor of C.V. Vishveshwara, (Eds.: B. R.Iyer (ed.), B.Bhawal (ed.)), Dordrecht, The Netherlands, 1997, pp. 69-85.
[8] J.Earman, Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes, Oxford University Press, Oxford, UK1995.
[9] P. S.Joshi, in Springer Handbook of Spacetime, (Eds.: A.Ashtekar (ed.), V.Petkov (ed.)), Springer‐Verlag, Berlin/Heidelberg, Germany, 2014, pp. 409-436. · Zbl 1295.83001
[10] P. S.Joshi, Global Aspects in Gravitation and Cosmology, Clarendon Press, 1997.
[11] Gravitational Collapse and Spacetime Singularities, (Ed.: P. S.Joshi (ed.)), Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, UK2012.
[12] P. S.Joshi, I. H.Dwivedi, Phys. Rev. D1993, 47, 5357.
[13] K.Maeda, T.Torii, M.Narita, Phys. Rev. Lett.1998, 81, 5270. · Zbl 0949.83059
[14] R.Giambo, Classical Quantum Gravity2005, 22, 2295. · Zbl 1097.83022
[15] S.Bhattacharya, R.Goswami, P. S.Joshi, Int. J. Mod. Phys. D2011, 20, 1123. · Zbl 1218.83025
[16] Y.Tavakoli, J.Marto, A. H.Ziaie, P.Vargas Moniz, Gen. Relativ. Gravitation2013, 45, 819. · Zbl 1266.83050
[17] A.Nakonieczna, M.Rogatko, U.Nakonieczny, J. High Energy Phys.2015, 2015, 12. · Zbl 1388.83056
[18] R.Giambò, J. Math. Phys.2009, 50, 012501. · Zbl 1189.83047
[19] R.Giambo, F.Giannoni, G.Magli, J. Math. Phys.2008, 49, 042504. · Zbl 1152.83381
[20] S. G.Ghosh, N.Dadhich, Phys. Rev. D2002, 65, 127502.
[21] R.Goswami, P. S.Joshi, Phys. Rev. D2007, 76, 084026.
[22] R.Giambò, S.Quintavalle, Classical Quantum Gravity2008, 25, 145003. · Zbl 1180.83065
[23] Y.Yamada, H.‐a.Shinkai, Phys. Rev. D2011, 83, 064006.
[24] N.Dadhich, S. G.Ghosh, S.Jhingan, Phys. Rev. D2013, 88, 084024.
[25] M.Shimano, U.Miyamoto, Classical Quantum Gravity2014, 31, 045002. · Zbl 1286.83072
[26] M.Rahman, S.Chakraborty, S.SenGupta, A. A.Sen, J. High Energy Phys.2019, 03, 178. · Zbl 1414.83045
[27] D.Moore, Trends in Quantum Gravity Research, Nova Science Publishers, 2006.
[28] M.Bojowald, AIP Conf. Proc.2007, 910, 294.
[29] Y.Tavakoli, J.Marto, A. H.Ziaie, P.Vargas Moniz, Phys. Rev. D2013, 87, 024042.
[30] J.Marto, Y.Tavakoli, P.Vargas Moniz, Int. J. Mod. Phys. D2015, 24, 1550025. · Zbl 1310.83010
[31] Y.Tavakoli, J.Marto, A.Dapor, Int. J. Mod. Phys. D2014, 23, 1450061.
[32] S. A.Hayward, Phys. Rev. Lett.2006, 96, 031103.
[33] R.Goswami, P. S.Joshi, P.Singh, Phys. Rev. Lett.2006, 96, 031302.
[34] C.Rovelli, F.Vidotto, Int. J. Mod. Phys. D2014, 23, 1442026.
[35] A.Papapetrou, A Random Walk in Relativity and Cosmology. Essay in Honor of P. C. Vaidya and A. K. Raychaudhuri, 1985.
[36] P. C.Vaidya, Gen. Relativ. Gravitation1999, 31, 119. · Zbl 1071.83511
[37] A.Wang, Y.Wu, Gen. Relativ. Gravitation1999, 31, 107. · Zbl 1071.83514
[38] M. D.Mkenyeleye, R.Goswami, S. D.Maharaj, Phys. Rev. D2014, 90, 064034.
[39] T.Harko, K.Cheng, Phys. Lett. A2000, 266, 249. · Zbl 0948.83027
[40] S. G.Ghosh, N.Dadhich, Gen. Relativ. Gravitation2003, 35, 359. · Zbl 1016.83032
[41] S.Ghosh, D.Kothawala, Gen. Relativ. Gravitation2008, 40, 9. · Zbl 1181.83185
[42] V.Husain, Phys. Rev. D1996, 53, 1759.
[43] S.Jhingan, N.Dadhich, P. S.Joshi, Phys. Rev. D2001, 63, 044010.
[44] K.Lake, Phys. Rev. D1991, 43, 1416.
[45] I. H.Dwivedi, P. S.Joshi, Classical Quantum Gravity1989, 6, 1599.
[46] Y.Kuroda, Prog. Theor. Phys.1984, 72, 63. · Zbl 1074.83524
[47] M.Sharif, H.Kausar, Astrophys. Space Sci.2011, 331, 281. · Zbl 1209.83034
[48] A. H.Ziaie, K.Atazadeh, S. M. M.Rasouli, Gen. Relativ. Gravitation2011, 43, 2943. · Zbl 1228.83087
[49] J.Cembranos, A. D. L.Cruz‐Dombriz, B. M.Núñez, J. Cosmol. Astropart. Phys.2012, 2012, 021.
[50] D.‐i.Hwang, D.‐h.Yeom, Classical Quantum Gravity2010, 27, 205002. · Zbl 1202.83091
[51] A. H.Ziaie, K.Atazadeh, Y.Tavakoli, Classical Quantum Gravity2010, 27, 075016, [Erratum: Classical Quantum Gravity2010, 27, 209801]. · Zbl 1187.83067
[52] N.Bedjaoui, P. G.LeFloch, J. M.Martin‐Garcia, J.Novak, Classical Quantum Gravity2010, 27, 245010. · Zbl 1208.83081
[53] G.Abbas, M.Tahir, Eur. Phys. J. C2017, 77, 537.
[54] M.Narita, AIP Conf. Proc.2009, 1122, 356.
[55] S. G.Ghosh, S.Jhingan, Phys. Rev. D2010, 82, 024017.
[56] K.Zhou, Z.‐Y.Yang, D.‐C.Zou, R.‐H.Yue, Mod. Phys. Lett. A2011, 26, 2135.
[57] M.Sharif, G.Abbas, Eur. Phys. J. Plus2013, 128, 102.
[58] S.Ohashi, T.Shiromizu, S.Jhingan, Phys. Rev. D2011, 84, 024021.
[59] K.Zhou, Z.‐Y.Yang, D.‐C.Zou, R.‐H.Yue, Int. J. Mod. Phys. D2011, 20, 2317. · Zbl 1266.83053
[60] G.Abbas, R.Ahmed, Mod. Phys. Lett. A2019, 34, 1950153. · Zbl 1416.83080
[61] R.Ahmed, G.Abbas, Mod. Phys. Lett. A2020, 35, 2050103.
[62] A. H.Ziaie, P. V.Moniz, A.Ranjbar, H. R.Sepangi, Eur. Phys. J. C2014, 74.
[63] A. H.Ziaie, A.Ranjbar, H. R.Sepangi, Classical Quantum Gravity2014, 32, 025010.
[64] P.Luz, F. C.Mena, A.H. Ziaie, Classical Quantum Gravity2018, 36, 015003.
[65] A. V.Frolov, Phys. Rev. D2004, 70, 104023.
[66] M.Gutperle, P.Kraus, J. High Energy Phys.2004, 2004, 024.
[67] G. T.Horowitz, in String Theory and Cosmology, Proc. Nobel Symp. 127, Sigtuna, Sweden, (Eds.: U.Danielsson (ed.), A.Goober (ed.), B.Nilsson (ed.)) World Scientific, pp 86-91; Phys. Scr. 2005, T117, 86.
[68] A.Bonanno, B.Koch, A.Platania, Found. Phys.2018, 48, 1393. · Zbl 1411.83020
[69] A.Platania, Asymptotically Safe Gravity: From Spacetime Foliation to Cosmology, Springer Theses, Springer International Publishing, 2018. · Zbl 1408.83002
[70] M.Reuter, F.Saueressig, Quantum Gravity and the Functional Renormalization Group: The Road towards Asymptotic Safety, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, UK2019.
[71] A.Bonanno, B.Koch, A.Platania, Classical Quantum Gravity2017, 34, 095012. · Zbl 1369.83025
[72] N.Arkani‐Hamed, L.Motl, A.Nicolis, C.Vafa, JHEP2007, 06, 060, hep‐th/0601001.
[73] G. T.Horowitz, J. E.Santos, J. High Energy Phys.2019, 06, 122. · Zbl 1416.83017
[74] G. T.Horowitz, J. E.Santos, B.Way, Classical Quantum Gravity2016, 33, 195007. · Zbl 1349.83053
[75] T.Crisford, J. E.Santos, Phys. Rev. Lett.2017, 118, 181101.
[76] Y. C.Ong, Int. J. Mod. Phys. A 2020, 35, 2030007.
[77] F. S. N.Lobo, J. Phys. Conf. Ser.2015, 600, 012006.
[78] V.Faraoni, S.Capozziello, Beyond Einstein Gravity, vol. 170, Springer, Dordrecht, The Netherlands2011. · Zbl 1206.85001
[79] L.Parker, Phys. Rev. D1971, 3, 346, [Erratum: Phys. Rev. D1971, 3, 2546].
[80] P.Rastall, Phys. Rev.1972, D6, 3357. · Zbl 0959.83525
[81] T.Harko, F. S. N.Lobo, Galaxies2014, 2, 410, 1407.2013.
[82] O.Bertolami, C. G.Boehmer, T.Harko, F. S. N.Lobo, Phys. Rev. D2007, 75, 104016.
[83] Y.Heydarzade, F.Darabi, Phys. Lett. B2017, 771, 365. · Zbl 1372.83061
[84] V. V.Kiselev, Classical Quantum Gravity2003, 20, 1187. · Zbl 1026.83036
[85] J. C.Fabris, O. F.Piattella, D. C.Rodrigues, C. E. M.Batista, M. H.Daouda, Int. J. Mod. Phys.: Conf. Ser.2012, 18, 67.
[86] H.Moradpour, Y.Heydarzade, F.Darabi, I. G.Salako, Eur. Phys. J. C2017, 77, 259.
[87] A. S.Al‐Rawaf, M. O.Taha, Phys. Lett. B1996, 366, 69.
[88] A.Abdel‐Rahman, Gen. Relativ. Gravitation1997, 29, 1329. · Zbl 0893.53042
[89] A. I.Arbab, J. Cosmol. Astropart. Phys.2003, 2003, 008. · Zbl 1027.83524
[90] C. E. M.Batista, J. C.Fabris, M. H.Daouda, Nuovo Cim. B2010, 125, 957.
[91] C. E. M.Batista, J. C.Fabris, O. F.Piattella, A. M.Velasquez‐Toribio, Eur. Phys. J.2013, C73, 2425.
[92] A. S.Al‐Rawaf, M. O.Taha, Gen. Relativ. Gravitation1996, 28, 935. · Zbl 0875.83034
[93] C. E. M.Batista, M. H.Daouda, J. C.Fabris, O. F.Piattella, D. C.Rodrigues, Phys. Rev.2012, D85, 084008.
[94] V.Majernik, Gen. Relativ. Gravitation2003, 35, 1007. · Zbl 1031.83030
[95] A. M. M.Abdel‐Rahman, Astrophys. Space Sci.2001, 278, 383. · Zbl 0991.83519
[96] M.Visser, Phys. Lett. B2018, 782, 83. · Zbl 1404.83009
[97] J.Gratus, Y. N.Obukhov, R. W.Tucker, Ann. Phys. (Amsterdam, Neth.)2012, 327, 2560. · Zbl 1252.83012
[98] F.Darabi, H.Moradpour, I.Licata, Y.Heydarzade, C.Corda, Eur. Phys. J. C2018, 78, 25.
[99] H.Moradpour, A.Bonilla, E. M. C.Abreu, J. A.Neto, Phys. Rev. D2017, 96, 123504.
[100] L. L.Smalley, J. Phys. A: Math. Gen.1983, 16, 2179.
[101] S.Hansraj, A.Banerjee, P.Channuie, Ann. Phys. (Amsterdam, Neth.)2019, 400, 320. · Zbl 1415.83043
[102] R. C.Tolman, Phys. Rev.1939, 55, 364. · Zbl 0020.28407
[103] A. M.Oliveira, H. E. S.Velten, J. C.Fabris, L.Casarini, Phys. Rev. D2015, 92, 044020.
[104] G.Abbas, M. R.Shahzad, Eur. Phys. J. A2018, 54, 211.
[105] G.Abbas, M. R.Shahzad, Chin. J. Phys.2020, 63, 1. · Zbl 07829546
[106] A. H.Ziaie, H.Moradpour, S.Ghaffari, Phys. Lett. B2019, 793, 276. · Zbl 1421.83092
[107] M.Capone, V. F.Cardone, M. L.Ruggiero, J. Phys.: Conf. Ser.2010, 222, 012012.
[108] H.Moradpour, I. G.Salako, Adv. High Energy Phys.2016, 2016, 3492796. · Zbl 1366.83083
[109] W.Bonnor, P.Vaidya, Gen. Relativ. Gravitation1970, 1, 127.
[110] P. S.Joshi, D.Malafarina, Int. J. Mod. Phys. D2011, 20, 2641. · Zbl 1263.83011
[111] E.Poisson, A Relativist’s Toolkit: The Mathematics of Black‐Hole Mechanics, Cambridge University Press, Cambridge, UK2004. · Zbl 1058.83002
[112] A.Wang, Y.Wu, Gen. Relativ. Gravitation1999, 31, 107. · Zbl 1071.83514
[113] B. C.Nolan, F. C.Mena, S. M.Gonçalves, Phys. Lett. A2002, 294, 122. · Zbl 1039.83511
[114] H.Maeda, Classical Quantum Gravity2006, 23, 2155. · Zbl 1091.83032
[115] J. W. J.York, in Quantum Theory of Gravity: Essays in Honor of the 60th Birthday of Bryce S. DeWitt, Bristol [Avon]: A. Hilger, 1984, p. 135.
[116] V.Faraoni, Universe2018, 4, 109, 1810.04667.
[117] F. J.Tipler, Phys. Lett.1977, A64, 8.
[118] A.Ori, Phys. Rev. Lett.1991, 67, 789. · Zbl 0990.83529
[119] C. J. S.Clarke, A.Królak, J. Geom. Phys.1985, 2, 127. · Zbl 0601.53080
[120] In fact, this case should be studied separately within the second solution of Equation (9) for the mass function. However, by using the chosen functions (30) and (31), this solution leads to an undefined value for the \(\dot{m}\) in the limit where the singularity is approached. This implies that, in order to study the case \(\beta = 0\), we need to consider the free functions \(F_1 ( v )\) and \(M ( v )\) different from those we have considered here in this work.
[121] M.Barriola, A.Vilenkin, Phys. Rev. Lett.1989, 63, 341.
[122] E.Witten, Phys. Rev. D1984, 30, 272.
[123] S.Weinberg, The Quantum Theory of Fields, vol. 2, Cambridge University Press, Cambridge, UK1996. · Zbl 0885.00020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.