×

Thermodynamic analysis of the static spherically symmetric field equations in Rastall theory. (English) Zbl 1366.83083

Summary: The restrictions on the Rastall theory due to application of the Newtonian limit to the theory are derived. In addition, we use the zero-zero component of the Rastall field equations as well as the unified first law of thermodynamics to find the Misner-Sharp mass content confined to the event horizon of the spherically symmetric static spacetimes in the Rastall framework. The obtained relation is calculated for the Schwarzschild and de-Sitter back holes as two examples. Bearing the obtained relation for the Misner-Sharp mass in mind together with recasting the one-one component of the Rastall field equations into the form of the first law of thermodynamics, we obtain expressions for the horizon entropy and the work term. Finally, we also compare the thermodynamic quantities of system, including energy, entropy, and work, with their counterparts in the Einstein framework to have a better view about the role of the Rastall hypothesis on the thermodynamics of system.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C57 Black holes

References:

[1] Jacobson, T., Thermodynamics of spacetime: the Einstein equation of state, Physical Review Letters, 75, 7, 1260-1263 (1995) · Zbl 1020.83609 · doi:10.1103/physrevlett.75.1260
[2] Eling, C.; Guedens, R.; Jacobson, T., Nonequilibrium thermodynamics of spacetime, Physical Review Letters, 96, 12 (2006) · doi:10.1103/PhysRevLett.96.121301
[3] Misner, C. W.; Sharp, D. H., Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Physical Review, 136, 2, B571-B576 (1964) · Zbl 0129.41102 · doi:10.1103/physrev.136.b571
[4] Maeda, H., Final fate of spherically symmetric gravitational collapse of a dust cloud in Einstein-Gauss-Bonnet gravity, Physical Review D, 73, 10 (2006) · doi:10.1103/physrevd.73.104004
[5] Maeda, H.; Nozawa, M., Generalized Misner-Sharp quasilocal mass in Einstein-Gauss-Bonnet gravity, Physical Review D, 77, 6 (2008) · doi:10.1103/physrevd.77.064031
[6] Cai, R.-G.; Cao, L.-M.; Hu, Y.-P.; Ohta, N., Generalized Misner-Sharp energy in f(R) gravity, Physical Review D, 80, 10 (2009) · doi:10.1103/physrevd.80.104016
[7] Paranjape, A.; Sarkar, S.; Padmanabhan, T., Thermodynamic route to field equations in Lanczos-Lovelock gravity, Physical Review D, 74, 10 (2006) · doi:10.1103/physrevd.74.104015
[8] Padmanabhan, T., Thermodynamical aspects of gravity: new insights, Reports on Progress in Physics, 73, 4 (2010) · doi:10.1088/0034-4885/73/4/046901
[9] Padmanabhan, T., Equipartition of energy in the horizon degrees of freedom and the emergence of gravity, Modern Physics Letters A, 25, 14, 1129-1136 (2010) · Zbl 1193.83070 · doi:10.1142/s021773231003313x
[10] Padmanabhan, T., Surface density of spacetime degrees of freedom from equipartition law in theories of gravity, Physical Review D, 81, 12 (2010) · doi:10.1103/physrevd.81.124040
[11] Akbar, M.; Cai, R.-G., Thermodynamic behavior of field equations for f(R) gravity, Physics Letters B, 648, 2-3, 243-248 (2007) · Zbl 1248.83102 · doi:10.1016/j.physletb.2007.03.005
[12] Akbar, M.; Cai, R.-G., Friedmann equations of FRW universe in scalar-ensor gravity, f(R) gravity and first law of thermodynamics, Physics Letters B, 635, 1, 7-10 (2006) · Zbl 1247.83242 · doi:10.1016/j.physletb.2006.02.035
[13] Akbar, M.; Cai, R. G., Thermodynamic behavior of the Friedmann equation at the apparent horizon of the FRW universe, Physical Review D, 75 (2007) · doi:10.1103/physrevd.75.084003
[14] Cai, R.-G.; Cao, L.-M., Unified first law and the thermodynamics of the apparent horizon in the FRW universe, Physical Review D, 75, 6 (2007) · doi:10.1103/physrevd.75.064008
[15] Cai, R.-G.; Cao, L.-M., Thermodynamics of apparent horizon in brane world scenario, Nuclear Physics B, 785, 1-2, 135-148 (2007) · Zbl 1150.83010 · doi:10.1016/j.nuclphysb.2007.06.016
[16] Sheykhi, A.; Wang, B.; Cai, R.-G., Thermodynamical properties of apparent horizon in warped DGP braneworld, Nuclear Physics B, 779, 1-2, 1-12 (2007) · Zbl 1200.83110 · doi:10.1016/j.nuclphysb.2007.04.028
[17] Sheykhi, A.; Wang, B.; Cai, R.-G., Deep connection between thermodynamics and gravity in Gauss-Bonnet braneworlds, Physical Review D, 76, 2 (2007) · Zbl 1222.83176 · doi:10.1103/physrevd.76.023515
[18] Sheykhi, A., Thermodynamical interpretation of gravity in braneworld scenarios, Journal of Cosmology and Astroparticle Physics, 2009, 5, 19 (2009)
[19] Sheykhi, A., Thermodynamics of apparent horizon and modified Friedmann equations, The European Physical Journal C, 69, 1-2, 265-269 (2010) · doi:10.1140/epjc/s10052-010-1372-9
[20] Sheykhi, A., Thermodynamics of interacting holographic dark energy with the apparent horizon as an IR cutoff, Classical and Quantum Gravity, 27, 2 (2010) · Zbl 1184.83074 · doi:10.1088/0264-9381/27/2/025007
[21] Cai, R. G.; Ohta, N., Horizon thermodynamics and gravitational field equations in Hořava-Lifshitz gravity, Physical Review D, 81, 8 (2010) · doi:10.1103/physrevd.81.084061
[22] Sheykhi, A., Thermodynamics of the apparent horizon in infrared modified Horava-Lifshitz gravity, Physical Review D, 87, 2 (2013) · doi:10.1103/PhysRevD.87.024022
[23] Sheykhi, A.; Dehghani, M. H.; Dehghani, R., Horizon thermodynamics and gravitational field equations in quasi-topological gravity, General Relativity and Gravitation, 46, article 1679 (2014) · Zbl 1294.83078 · doi:10.1007/s10714-014-1679-1
[24] Rastall, P., Generalization of the Einstein theory, Physical Review D, 6, 3357-3359 (1972) · Zbl 0959.83525 · doi:10.1103/physrevd.6.3357
[25] Nojiri, S.; Odintsov, S. D., Gravity assisted dark energy dominance and cosmic acceleration, Physics Letters B, 599, 3-4, 137-142 (2004) · doi:10.1016/j.physletb.2004.08.045
[26] Allemandi, G.; Borowiec, A.; Francaviglia, M.; Odintsov, S. D., Dark energy dominance and cosmic acceleration in first-order formalism, Physical Review D, 72, 6 (2005) · doi:10.1103/physrevd.72.063505
[27] Koivisto, T., A note on covariant conservation of energy-momentum in modified gravities, Classical and Quantum Gravity, 23, 12, 4289-4296 (2006) · Zbl 1096.83056 · doi:10.1088/0264-9381/23/12/n01
[28] Bertolami, O.; B{\`“o}hmer, C. G.; Harko, T.; Lobo, F. S., Extra force in <mml:math id=”M101“>f<mml:mo stretchy=”false“>(R<mml:mo stretchy=”false“>) modified theories of gravity, Physical Review D, 75, 10 (2007) · doi:10.1103/physrevd.75.104016
[29] Harko, T.; Lobo, F. S. N., Generalized curvature-matter couplings in modified gravity, Galaxies, 2, 3, 410-465 (2014) · doi:10.3390/galaxies2030410
[30] Smalley, L. L., Variational principle for a prototype Rastall theory of gravitation, Il Nuovo Cimento B, 80, 1, 42-48 (1984) · doi:10.1007/bf02899371
[31] Batista, C. E. M.; Daouda, M. H.; Fabris, J. C.; Piattella, O. F.; Rodrigues, D. C., Rastall cosmology and the ΛcDM model, Physical Review D, 85, 8 (2012) · doi:10.1103/physrevd.85.084008
[32] Gibbons, G. W.; Hawking, S. W., Cosmological event horizons, thermodynamics, and particle creation, Physical Review D, 15, 10, 2738-2751 (1977) · doi:10.1103/physrevd.15.2738
[33] Parker, L., Quantized fields and particle creation in expanding universes. II, Physical Review D, 3, 2, 346 (1971) · Zbl 0186.58603 · doi:10.1103/PhysRevD.3.346
[34] Ford, L. H., Gravitational particle creation and inflation, Physical Review D, 35, 10, 2955-2960 (1987) · doi:10.1103/PhysRevD.35.2955
[35] Birrell, N. D.; Davies, P. C. W., Quantum Fields in Curved Space (1982), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0476.53017
[36] Moradpour, H., Thermodynamics of flat FLRW universe in Rastall theory, Physics Letters B, 757, 187-191 (2016) · Zbl 1360.83056 · doi:10.1016/j.physletb.2016.03.072
[37] Oliveira, A. M.; Velten, H. E. S.; Fabris, J. C.; Casarini, L., Neutron stars in Rastall gravity, Physical Review D, 92, 4 (2015) · doi:10.1103/PhysRevD.92.044020
[38] Batista, C. E. M.; Fabris, J. C.; Piattella, O. F.; Velasquez-Toribio, A. M., Observational constraints on Rastall’s cosmology, European Physical Journal C, 73, 5, 1-7 (2013) · doi:10.1140/epjc/s10052-013-2425-7
[39] Fabris, J. C.; Piattella, O. F.; Rodrigues, D. C.; Daouda, M. H., Rastall’s cosmology and its observational constraints, AIP Conference Proceedings, 1647, 1, 50-53 (2015) · doi:10.1063/1.4913336
[40] Caramês, T. R. P.; Daouda, M. H.; Fabris, J. C.; Oliveira, A. M.; Piattella, O. F.; Strokov, V., The Brans-Dicke-Rastall theory, European Physical Journal C, 74, article 3145 (2014) · doi:10.1140/epjc/s10052-014-3145-3
[41] Caramês, T.; Daouda, M. H.; Fabris, J. C.; Oliveira, A. M.; Piattella, O. F.; Strokov, V., A Rastall scalar-tensor theory
[42] Fabris, J. C.; Piattella, O. F.; Rodrigues, D. C.; Batista, C. E. M.; Daouda, M. H., Rastall cosmology, International Journal of Modern Physics: Conference Series, 18, 67-76 (2012) · doi:10.1142/s2010194512008227
[43] Campos, J. P.; Fabris, J. C.; Perez, R.; Piattella, O. F.; Velten, H., Does Chaplygin gas have salvation?, The European Physical Journal C, 73, article 2357 (2013) · doi:10.1140/epjc/s10052-013-2357-2
[44] Fabris, J. C.; Hamani Daouda, M.; Piattella, O. F., Note on the evolution of the gravitational potential in Rastall scalar field theories, Physics Letters B: Nuclear, Elementary Particle and High-Energy Physics, 711, 3-4, 232-237 (2012) · doi:10.1016/j.physletb.2012.04.020
[45] Fabris, J. C., Conservation laws in gravitation and cosmology
[46] Salako, I. G.; Jawad, A., Bianchi type-III models with anisotropic dark energy in Brans-Dicke-Rastall theory, Astrophysics and Space Science, 359, article 46 (2015) · doi:10.1007/s10509-015-2494-1
[47] Silva, G. F.; Piattella, O. F.; Fabris, J. C.; Casarini, L.; Barbosa, T. O., Bouncing solutions in Rastall’s theory with a barotropic fluid, Gravitation and Cosmology, 19, 3, 156-162 (2013) · Zbl 1278.83046 · doi:10.1134/S0202289313030109
[48] Capone, M.; Cardone, V. F.; Ruggiero, M. L., The possibility of an accelerating cosmology in Rastall’s theory, Journal of Physics: Conference Series, 222, 1 (2010) · doi:10.1088/1742-6596/222/1/012012
[49] Brax, Ph.; van de Bruck, C.; Davis, A. C., A chameleon primer
[50] Bezerra de Mello, E. R.; Fabris, J. C.; Hartmann, B., Abelian-Higgs strings in Rastall gravity, Classical and Quantum Gravity, 32, 8 (2015) · Zbl 1328.83174 · doi:10.1088/0264-9381/32/8/085009
[51] Moradpour, H.; Sadeghnezhad, N., Traversable asymptotically flat wormholes in Rastall gravity
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.