×

Quantum hypergraph homomorphisms and non-local games. (English) Zbl 1539.81030

Summary: Using the simulation paradigm in information theory, we define notions of quantum hypergraph homomorphisms and quantum hypergraph isomorphisms, and show that they constitute partial orders and equivalence relations, respectively. Specialising to the case where the underlying hypergraphs arise from non-local games, we define notions of quantum non-local game homomorphisms and quantum non-local game isomorphisms, and show that games, isomorphic with respect to a given correlation type, have equal values and asymptotic values relative to this type. We examine a new class of no-signalling correlations, which witness the existence of non-local game homomorphisms, and characterise them in terms of states on tensor products of canonical operator systems. We define jointly synchronous correlations and show that they correspond to traces on the tensor product of the canonical C*-algebras associated with the game parties.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
46L07 Operator spaces and completely bounded maps
81R15 Operator algebra methods applied to problems in quantum theory
91A12 Cooperative games
62H20 Measures of association (correlation, canonical correlation, etc.)
46L06 Tensor products of \(C^*\)-algebras

References:

[1] A. Acín, T. Fritz, Tobias, A. Leverrier and A. B. Sainz, A combinatorial approach to non-locality and contextuality, Comm. Math. Phys. 334 (2015), 533-628. · Zbl 1312.81010
[2] R. Araiza, T. Russell and M. Tomforde, A universal representation for quantum commuting correlations, arXiv:2102.05827 (2021).
[3] R. Araiza, T. Russell and M. Tomforde, Matricial Archimedean order unit spaces and quan-tum correlations, arXiv:2109.11671 (2021).
[4] A. Atserias, L. Mančinska, D. E. Roberson, D. E. Šámal, S. Severini and A. Varvitsiotis, Quantum and non-signalling graph isomorphisms, J. Combin. Theory Ser. B 136 (2019), 289-328. · Zbl 1414.05197
[5] R. S. Barbosa, M. Karvonen and S. Mansfield, Closing Bell: Boxing black box simulations in the resource theory of contextuality, arXiv:2104.11241 (2021).
[6] J. S. Bell, On the Einstein Podolsky Rosen paradox, Phys. Phys. Fiz. 1 (1964), 195-200.
[7] D. P. Blecher, The Shilov boundary of an operator space and the characterization theorems, J. Funct. Anal. 182 (2001), 280-343. · Zbl 1064.46042
[8] F. Boca, Free products of completely positive maps and spectral sets, J. Funct. Anal. 97 (1991), 251-263. · Zbl 0741.46024
[9] M. Brannan, S. Harris, I. G. Todorov and L. Turowska, Synchronicity for quantum non-local games, J. Funct. Anal. 284 (2023), no. 2, art. 109738, 54 pp. · Zbl 1515.81117
[10] M. Brannan, S. Harris, I. G. Todorov and L. Turowska, Quantum no-signalling bicorrela-tions, arXiv:2302.04268 (2023).
[11] N. P. Brown and N. Ozawa, C*-Algebras and Finite-Dimensional Approximations, Amer. Math. Soc., 2008. · Zbl 1160.46001
[12] P. J. Cameron, A. Montanaro, M. W. Newman, S. Severini and A. Winter, On the quantum chromatic number of a graph, Electron. J. Combin. 14 (2007), no. 1, art. 81, 15 pp. · Zbl 1182.05054
[13] M. D. Choi and E. G. Effros, Injectivity and operator spaces, J. Funct. Anal. 24 (1977), 156-209. · Zbl 0341.46049
[14] R. Cleve, O. Høyer, B. Toner and J. Watrous, Consequences and limits of nonlocal strategies, in: Proceedings of the 19th Annual IEEE Conference on Computational Complexity (2004), 236-249.
[15] R. Cleve and R. Mittal, Characterization of binary constraint system games, in: Automata, Languages, and Programming, Lecture Notes in Computer Sci. 8572, Springer, 2014, 320-331. · Zbl 1364.91015
[16] T. S. Cubitt, D. Leung, W. Matthews and A. Winter, Zero-error channel capacity and simulation assisted via non-local correlation, IEEE Trans. Inform. Theory 57 (2011), 5509-5523. · Zbl 1365.81024
[17] G. De las Cuevas, T. Drescher and T. Netzer, Quantum magic squares: dilations and their limitations, J. Math. Phys. 61 (2020), art. 111704, 15 pp. · Zbl 1454.05018
[18] R. Duan, S. Severini and A. Winter, Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovász θ function, IEEE Trans. Inform. Theory 59 (2013), 1164-1174. · Zbl 1364.81059
[19] R. Duan and A. Winter, No-signalling-assisted zero-error capacity of quantum channels and an information theoretic interpretation of the Lovász number, IEEE Trans. Inform. Theory 62 (2016), 891-914. · Zbl 1359.81062
[20] K. Dykema and V. I. Paulsen, Synchronous correlation matrices and Connes’ embedding conjecture, J. Math. Phys. 57 (2016), art. 015214, 12 pp. · Zbl 1330.81027
[21] K. Dykema, V. I. Paulsen and J. Prakash, The Delta game, Quantum Inf. Comput. 18 (2018), 599-616.
[22] K. Dykema, V. I. Paulsen and J. Prakash, Non-closure of the set of quantum correlations via graphs, Comm. Math. Phys. 365 (2019), 1125-1142. · Zbl 1408.81008
[23] D. Farenick, A. Kavruk, V. I. Paulsen and I. G. Todorov, Characterizations of the weak expectation property, New York J. Math. 24A (2018), 107-135. · Zbl 1412.46074
[24] D. Farenick and V. I. Paulsen, Operator system quotients of matrix algebras and their tensor products, Math. Scand. 111 (2012), 210-243. · Zbl 1273.46038
[25] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249. · JFM 49.0047.01
[26] T. Fritz, Tsirelson’s problem and Kirchberg’s conjecture, Rev. Math. Phys. 24 (2012), art. 1250012, 67 pp. · Zbl 1250.81023
[27] C. Godsil and G. Royle, Algebraic Graph Theory, Springer, 2001. · Zbl 0968.05002
[28] J. W. Helton, K. P. Meyer, V. I. Paulsen and M. Satriano, Algebras, synchronous games, and chromatic numbers of graphs, New York J. Math. 25 (2019), 328-361. · Zbl 1410.05069
[29] Z. Ji, A. Natarajan, T. Vidick, J. Wright and H. Yuen, MIP*=RE, arXiv:2001.04383 (2020).
[30] M. Junge, M. Navascues, C. Palazuelos, D. Perez-Garcia, V. Scholz and R. F. Werner, Connes’ embedding problem and Tsirelson’s problem, J. Math. Phys. 52 (2011), art. 012102, 12 pp. · Zbl 1314.81038
[31] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Amer. Math. Soc., 1997. · Zbl 0888.46039
[32] A. Katavolos and I. G. Todorov, Normalizers of operator algebras and reflexivity, Proc. London Math. Soc. (3) 86 (2003), 463-484. · Zbl 1044.47051
[33] A. S. Kavruk, Nuclearity related properties in operator systems, J. Operator Theory 71 (2014), 95-156. · Zbl 1349.46060
[34] A. S. Kavruk, V. I. Paulsen, I. G. Todorov and M. Tomforde, Tensor products of operator systems, J. Funct. Anal. 261 (2011), 267-299. · Zbl 1235.46051
[35] S.-J. Kim, V. I. Paulsen and C. Schafhauser, A synchronous game for binary constraint systems, J. Math. Phys. 59 (2018), art. 032201, 17 pp. · Zbl 1384.81018
[36] L. Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25 (1979), 1-7. · Zbl 0395.94021
[37] M. Lupini, L. Mančinska, V. I. Paulsen, D. E. Roberson, G. Scarpa, S. Severini, I. G. Todorov and A. Winter, Perfect strategies for non-signalling games, Math. Phys. Anal. Geom. 23 (2020), art. 7, 31 pp. · Zbl 1436.91021
[38] M. Lupini, L. Mančinska and D. E. Roberson, Nonlocal games and quantum permutation groups, J. Funct. Anal. 279 (2020), art. 108592, 44 pp. · Zbl 1508.81313
[39] L. Mančinska, V. I. Paulsen, I. G. Todorov and A. Winter, Products of synchronous games, Studia Math. 272 (2023), 299-317. · Zbl 1534.81022
[40] L. Mančinska and D. E. Roberson, Quantum homomorphisms, J. Combin. Theory Ser. B 118 (2016), 228-267. · Zbl 1332.05098
[41] D. N. Mermin, Simple unified form for the major no-hidden-variables theorems, Phys. Rev. Lett. 65 (1990), 3373-3376. · Zbl 0971.81501
[42] N. Ozawa, About the Connes’ embedding problem -algebraic approaches, Japan. J. Math. 8 (2013), 147-183. · Zbl 1278.46053
[43] V. I. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Univ. Press, 2002. · Zbl 1029.47003
[44] V. I. Paulsen and M. Rahaman, Bisynchronous games and factorizable maps, Ann. Henri Poincaré 22 (2021), 593-614. · Zbl 1457.91108
[45] V. I. Paulsen, S. Severini, D. Stahlke, I. G. Todorov and A. Winter, Estimating quantum chromatic numbers, J. Funct. Anal. 270 (2016), 2188-2222. · Zbl 1353.46043
[46] V. I. Paulsen and I. G. Todorov, Quantum chromatic numbers via operator systems, Quart. J. Math. 66 (2015), 677-692. · Zbl 1314.05078
[47] V. I. Paulsen, I. G. Todorov and M. Tomforde, Operator system structures on ordered spaces, Proc. London Math. Soc. (3) 102 (2011), 25-49. · Zbl 1213.46050
[48] G. Pisier, Introduction to Operator Space Theory, Cambridge Univ. Press, 2003. · Zbl 1093.46001
[49] R. Raz, A parallel repetition theorem, SIAM J. Comput. 27 (1998), 763-803. · Zbl 0911.68082
[50] M. A. Rieffel, Morita equivalence for C*-algebras and W*-algebras, J. Pure Appl. Algebra 5 (1974), 51-96. · Zbl 0295.46099
[51] D. E. Roberson and S. Schmidt, Quantum symmetry vs. nonlocal symmetry, arXiv: 2012.13328 (2021).
[52] C. E. Shannon, The zero error capacity of a noisy channel, IRE Trans. Inform. Theory 2 (1956), no. 3, 8-19.
[53] W. Slofstra, The set of quantum correlations is not closed, Forum Math. Pi 7 (2019), art. e1, 41 pp. · Zbl 1405.81021
[54] W. Slofstra, Tsirelson’s problem and an embedding theorem for groups arising from non-local games, J. Amer. Math. Soc. 33 (2020), 1-56. · Zbl 1480.20083
[55] I. G. Todorov and L. Turowska, Quantum no-signalling correlations and non-local games, arXiv:2009.07016 (2020).
[56] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150-168. · JFM 58.0609.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.