×

A comparison of the Georgescu and Vasy spaces associated to the \(N\)-body problems and applications. (English) Zbl 1514.81284

Summary: We provide new insight into the analysis of \(N\)-body problems by studying a compactification \(M_N\) of \({\mathbb{R}}^{3N}\) that is compatible with the analytic properties of the \(N\)-body Hamiltonian \(H_N\). We show that our compactification coincides with a compactification introduced by Vasy using blow-ups in order to study the scattering theory of \(N\)-body Hamiltonians and with a compactification introduced by Georgescu using \(C^*\)-algebras. In particular, the compactifications introduced by Georgescu and by Vasy coincide (up to a homeomorphism that is the identity on \({\mathbb{R}}^{3N})\). Our result has applications to the spectral theory of \(N\)-body problems and to some related approximation properties. For instance, results about the essential spectrum, the resolvents, and the scattering matrices of \(H_N\) (when they exist) may be related to the behavior near \(M_N{\setminus} {\mathbb{R}}^{3N}\) (i.e., “at infinity”) of their distribution kernels, which can be efficiently studied using our methods. The compactification \(M_N\) is compatible with the action of the permutation group \(S_N\), which allows to implement bosonic and fermionic (anti-)symmetry relations. We also indicate how our results lead to a regularity result for the eigenfunctions of \(H_N\).

MSC:

81V70 Many-body theory; quantum Hall effect
54D35 Extensions of spaces (compactifications, supercompactifications, completions, etc.)
35B44 Blow-up in context of PDEs
81U10 \(n\)-body potential quantum scattering theory
46L05 General theory of \(C^*\)-algebras
47A10 Spectrum, resolvent
81U20 \(S\)-matrix theory, etc. in quantum theory
20B05 General theory for finite permutation groups

References:

[1] Ammann, B.; Carvalho, C.; Nistor, V., Regularity for eigenfunctions of Schrödinger operators, Lett. Math. Phys., 101, 1, 49-84 (2012) · Zbl 1254.35159 · doi:10.1007/s11005-012-0551-z
[2] Ammann, B.; Ionescu, AD; Nistor, V., Sobolev spaces on Lie manifolds and regularity for polyhedral domains, Doc. Math., 11, 161-206 (2006) · Zbl 1247.35031
[3] Ammann, B.; Lauter, R.; Nistor, V., On the geometry of Riemannian manifolds with a Lie structure at infinity, Int. J. Math. Math. Sci., 2004, 1-4, 161-193 (2004) · Zbl 1071.53020 · doi:10.1155/S0161171204212108
[4] Ammann, B.; Lauter, R.; Nistor, V., Pseudodifferential operators on manifolds with a Lie structure at infinity, Ann. Math. (2), 165, 3, 717-747 (2007) · Zbl 1133.58020 · doi:10.4007/annals.2007.165.717
[5] Ammann, B., Mougel, J., Nistor, V.: A regularity result for the bound states of \(N\)-body Schrödinger operators: blow-ups and Lie manifolds. arXiv:2012.13902 (2020)
[6] Amrein, W., Boutet de Monvel, A., Georgescu, V.: \(C_0\)-Groups, Commutator Methods and Spectral Theory of \(N\)-Body Hamiltonians. Modern Birkhäuser Classics. Birkhäuser/Springer, Basel (1996). 2013, reprint of the 1996 edition · Zbl 0962.47500
[7] Bach, V.; Breteaux, S.; Petrat, S.; Pickl, P.; Tzaneteas, T., Kinetic energy estimates for the accuracy of the time-dependent Hartree-Fock approximation with Coulomb interaction, J. Math. Pures Appl. (9), 105, 1, 1-30 (2016) · Zbl 1333.35221 · doi:10.1016/j.matpur.2015.09.003
[8] Baldare, A., Côme, R., Lesch, M., Nistor, V.: Fredholm conditions and index for restrictions of invariant pseudodifferential to isotypical components. Max Planck Preprint and arXiv:2004.01543 (2020) to appear in Münster Math. J · Zbl 1483.58005
[9] Baldare, A.; Côme, R.; Lesch, M.; Nistor, V., Fredholm conditions for invariant operators: finite abelian groups and boundary value problems, J. Oper. Theory, 85, 1, 229-256 (2021) · Zbl 1483.58005
[10] Baldare, A., Côme, R., Nistor, V.: Fredholm conditions for operators invariant with respect to compact lie group actions. arXiv preprint arXiv:2012.03944 (December 2020) to appear in CR Acad. Sci, Paris · Zbl 1477.58016
[11] Bär, C., Green-hyperbolic operators on globally hyperbolic spacetimes, Commun. Math. Phys., 333, 3, 1585-1615 (2015) · Zbl 1316.58027 · doi:10.1007/s00220-014-2097-7
[12] Bär, C., Ginoux, N.: Classical and quantum fields on Lorentzian manifolds. In: Global Differential Geometry, Volume 17 of Springer Proceedings of Mathematics, pp. 359-400. Springer, Heidelberg (2012) · Zbl 1254.81044
[13] Benini, M.; Dappiaggi, C.; Hack, T-P, Quantum field theory on curved backgrounds—a primer, Int. J. Modern Phys. A, 28, 17, 1330023, 49 (2013) · Zbl 1272.81128 · doi:10.1142/S0217751X13300238
[14] Boutet de Monvel-Berthier, A.; Georgescu, V., Graded \(C^*\)-algebras and many-body perturbation theory. I. The \(N\)-body problem, C. R. Acad. Sci. Paris Sér. I Math., 312, 6, 477-482 (1991) · Zbl 0756.46035
[15] Boutet de Monvel-Berthier, A., Georgescu, V.: Graded \(C^*\)-algebras and many-body perturbation theory. II. The Mourre estimate. 210, 6-7, 75-96 (1992). Méthodes semi-classiques, Vol. 2 (Nantes, 1991) · Zbl 0999.46032
[16] Carvalho, C.; Côme, R.; Qiao, Y., Gluing action groupoids: Fredholm conditions and layer potentials, Rev. Roumaine Math. Pures Appl., 64, 2-3, 113-156 (2019) · Zbl 1449.35467
[17] Carvalho, C.; Nistor, V.; Qiao, Y.; André, C.; Bastos, MA; Karlovich, AY; Silbermann, B.; Zaballa, I., Fredholm conditions on non-compact manifolds: theory and examples, Operator Theory, Operator Algebras, and Matrix Theory, Volume 267 of Operator Theory: Advances and Applications, 79-122 (2018), Cham: Birkhäuser/Springer, Cham · Zbl 1446.58011 · doi:10.1007/978-3-319-72449-2_4
[18] Chruściel, P.; Herzlich, M., The mass of asymptotically hyperbolic Riemannian manifolds, Pac. J. Math., 212, 2, 231-264 (2003) · Zbl 1056.53025 · doi:10.2140/pjm.2003.212.231
[19] Côme, R., The Fredholm property for groupoids is a local property, Results Math., 74, 4, 160 (2019) · Zbl 1430.58020 · doi:10.1007/s00025-019-1084-x
[20] Damak, M.; Georgescu, V., Self-adjoint operators affiliated to \(C^*\)-algebras, Rev. Math. Phys., 16, 2, 257-280 (2004) · Zbl 1071.46038 · doi:10.1142/S0129055X04001984
[21] Dappiaggi, C.; Finster, F.; Murro, S.; Radici, E., The fermionic signature operator in de Sitter spacetime, J. Math. Anal. Appl., 485, 2, 123808, 29 (2020) · Zbl 1436.81163 · doi:10.1016/j.jmaa.2019.123808
[22] Debord, C.; Lescure, J-M; Rochon, F., Pseudodifferential operators on manifolds with fibred corners, Ann. Inst. Fourier (Grenoble), 65, 4, 1799-1880 (2015) · Zbl 1377.58025 · doi:10.5802/aif.2974
[23] Dereziński, J., Asymptotic completeness of long-range \(N\)-body quantum systems, Ann. Math. (2), 138, 2, 427-476 (1993) · Zbl 0844.47005 · doi:10.2307/2946615
[24] Dereziński, J.; Faupin, J.; Nguyen, Q.; Richard, S., On radial Schrödinger operators with a Coulomb potential: general boundary conditions, Adv. Oper. Theory, 5, 3, 1132-1192 (2020) · Zbl 1448.34158 · doi:10.1007/s43036-020-00082-6
[25] Dereziński, J.; Gérard, C., Scattering Theory of Classical and Quantum \(N\)-Particle Systems. Texts and Monographs in Physics (1997), Berlin: Springer, Berlin · Zbl 0899.47007 · doi:10.1007/978-3-662-03403-3
[26] Dereziński, J.; Gérard, C., Mathematics of Quantization and Quantum Fields. Cambridge Monographs on Mathematical Physics (2013), Cambridge: Cambridge University Press, Cambridge · Zbl 1271.81004 · doi:10.1017/CBO9780511894541
[27] Dereziński, J.; Richard, S., On Schrödinger operators with inverse square potentials on the half-line, Ann. Henri Poincaré, 18, 3, 869-928 (2017) · Zbl 1370.81070 · doi:10.1007/s00023-016-0520-7
[28] Dereziński, J.; Wrochna, M., Exactly solvable Schrödinger operators, Ann. Henri Poincaré, 12, 2, 397-418 (2011) · Zbl 1213.81121 · doi:10.1007/s00023-011-0077-4
[29] Dixmier, J.: \(C^*\)-algebras. North-Holland Publishing Co., Amsterdam-New York-Oxford (1977). Translated from the French by Francis Jellett, North-Holland Mathematical Library, vol. 15 · Zbl 0372.46058
[30] Flad, H-J; Harutyunyan, G.; Schneider, R.; Schulze, B-W, Explicit Green operators for quantum mechanical Hamiltonians. I. The hydrogen atom, Manuscr. Math., 135, 3-4, 497-519 (2011) · Zbl 1229.35158 · doi:10.1007/s00229-011-0429-x
[31] Fulton, W.; MacPherson, R., A compactification of configuration spaces, Ann. Math. (2), 139, 1, 183-225 (1994) · Zbl 0820.14037 · doi:10.2307/2946631
[32] Georgescu, V., On the essential spectrum of elliptic differential operators, J. Math. Anal. Appl., 468, 2, 839-864 (2018) · Zbl 1400.35191 · doi:10.1016/j.jmaa.2018.08.042
[33] Georgescu, V.; Gérard, C.; Häfner, D., Resolvent and propagation estimates for Klein-Gordon equations with non-positive energy, J. Spectr. Theory, 5, 1, 113-192 (2015) · Zbl 1326.35212 · doi:10.4171/JST/93
[34] Georgescu, V.; Iftimovici, A., Localizations at infinity and essential spectrum of quantum Hamiltonians. I. General theory, Rev. Math. Phys., 18, 4, 417-483 (2006) · Zbl 1109.47004 · doi:10.1142/S0129055X06002693
[35] Georgescu, V.; Nistor, V., On the essential spectrum of \(N\)-body Hamiltonians with asymptotically homogeneous interactions, J. Oper. Theory, 77, 2, 333-376 (2017) · Zbl 1389.81021 · doi:10.7900/jot.2016apr08.2115
[36] Gérard, C.; Daudé, T.; Häfner, D.; Nicolas, JP, An introduction to quantum field theory on curved spacetimes, Asymptotic Analysis in General Relativity, Volume 443 of London Mathematical Society. Lecture Note Series, 171-218 (2018), Cambridge: Cambridge University Press, Cambridge · Zbl 1416.83032 · doi:10.1017/9781108186612.004
[37] Gérard, C., Stoskopf, T.: Hadamard states for quantized Dirac fields on Lorentzian manifolds of bounded geometry. arXiv:2108.11630
[38] Griebel, M.; Hamaekers, J., Sparse grids for the Schrödinger equation, M2AN Math. Model. Numer. Anal., 41, 2, 215-247 (2007) · Zbl 1145.65096 · doi:10.1051/m2an:2007015
[39] Hörmander, L., The Analysis of Linear Partial Differential Operators. III: Pseudo-differential Operators. Classics in Mathematics (1994), Berlin: Springer, Berlin · Zbl 1115.35005
[40] Hunsicker, E.; Li, H.; Nistor, V.; Uski, V., Analysis of Schrödinger operators with inverse square potentials II: FEM and approximation of eigenfunctions in the periodic case, Numer. Methods Partial Differ. Equ., 30, 4, 1130-1151 (2014) · Zbl 1390.65145 · doi:10.1002/num.21861
[41] Hunziker, W.; Sigal, IM, The quantum \(N\)-body problem, J. Math. Phys., 41, 6, 3448-3510 (2000) · Zbl 0981.81026 · doi:10.1063/1.533319
[42] Jecko, T., On the mathematical treatment of the Born-Oppenheimer approximation, J. Math. Phys., 55, 5, 053504, 26 (2014) · Zbl 1298.81092 · doi:10.1063/1.4870855
[43] Joyce, D., A generalization of manifolds with corners, Adv. Math., 299, 760-862 (2016) · Zbl 1359.58001 · doi:10.1016/j.aim.2016.06.004
[44] Junker, W.; Schrohe, E., Adiabatic vacuum states on general spacetime manifolds: definition, construction, and physical properties, Ann. Henri Poincaré, 3, 6, 1113-1181 (2002) · Zbl 1038.81052 · doi:10.1007/s000230200001
[45] Klainerman, S.; Rodnianski, I.; Szeftel, J., The bounded \(L^2\) curvature conjecture, Invent. Math., 202, 1, 91-216 (2015) · Zbl 1330.53089 · doi:10.1007/s00222-014-0567-3
[46] Kondrat’ev, V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Transl. Moscow Math. Soc. 16, 227-313 (1967) · Zbl 0194.13405
[47] Kottke, C., Blow-up in manifolds with generalized corners, Int. Math. Res. Not., 8, 2375-2415 (2018) · Zbl 1406.58001
[48] Kottke, C., Functorial compactification of linear spaces, Proc. Am. Math. Soc., 147, 9, 4067-4081 (2019) · Zbl 1455.54021 · doi:10.1090/proc/14452
[49] Kottke, C.; Melrose, R., Generalized blow-up of corners and fiber products, Trans. Am. Math. Soc., 367, 1, 651-705 (2015) · Zbl 1372.57042 · doi:10.1090/S0002-9947-2014-06222-3
[50] König, A.: Master thesis. University of Regensburg (2021). doi:10.5283/epub.47792
[51] Lauter, R.; Monthubert, B.; Nistor, V., Spectral invariance for certain algebras of pseudodifferential operators, J. Inst. Math. Jussieu, 4, 3, 405-442 (2005) · Zbl 1088.35087 · doi:10.1017/S1474748005000125
[52] Lauter, R., Seiler, J.: Pseudodifferential analysis on manifolds with boundary—a comparison of b-calculus and cone algebra. In: Approaches to Singular Analysis (Berlin, 1999), Volume 125 of Operator Theory: Advances and Applications, pp. 131-166. Birkhäuser, Basel (2001) · Zbl 0998.58018
[53] Lee, J., Introduction to Topological Manifolds, Volume 202 of Graduate Texts in Mathematics (2000), New York: Springer, New York · Zbl 0956.57001
[54] Lieb, E.; Seiringer, R., The Stability of Matter in Quantum Mechanics (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1179.81004
[55] Mageira, A., Some examples of graded \(C^*\)-algebras, Math. Phys. Anal. Geom., 11, 3-4, 381-398 (2008) · Zbl 1182.46046 · doi:10.1007/s11040-008-9048-5
[56] Melrose, R.: Differential analysis on manifolds with coners. Book in preparation. Manuscript available at https://math.mit.edu/ rbm/book.html
[57] Melrose, R., Calculus of conormal distributions on manifolds with corners, Int. Math. Res. Not., 3, 51-61 (1992) · Zbl 0754.58035 · doi:10.1155/S1073792892000060
[58] Melrose, R.: Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces. In: Spectral and Scattering Theory (Sanda, 1992), Volume 161 of Lecture Notes in Pure and Applied Mathematics, pp. 85-130. Dekker, New York (1994) · Zbl 0837.35107
[59] Melrose, R., Singer, M.: Scattering configuration spaces. arXiv:0808.2022
[60] Mougel, J., Essential spectrum, quasi-orbits and compactifications: application to the Heisenberg group, Rev. Roumaine Math. Pures Appl., 64, 325-343 (2019) · Zbl 1449.47028
[61] Mougel, J.; Nistor, V.; Prudhon, N., A refined HVZ-theorem for asymptotically homogeneous interactions and finitely many collision planes, Rev. Roumaine Math. Pures Appl., 62, 1, 287-308 (2017) · Zbl 1389.81022
[62] Mougel, J.; Prudhon, N., Exhaustive families of representations of \(C^\ast \)-algebras associated with \(N\)-body Hamiltonians with asymptotically homogeneous interactions, C. R. Math. Acad. Sci. Paris, 357, 2, 200-204 (2019) · Zbl 1409.81046 · doi:10.1016/j.crma.2019.01.010
[63] Măntoiu, M.; Nistor, V., Spectral theory in a twisted groupoid setting: spectral decompositions, localization and Fredholmness, Münster J. Math., 13, 1, 145-196 (2020) · Zbl 1457.58019
[64] Măntoiu, M., Purice, R., Richard, S.: Twisted crossed products and magnetic pseudodifferential operators. In: Advances in Operator Algebras and Mathematical Physics, Volume 5 of Theta Series in Advanced Mathematics, pp. 137-172. Theta, Bucharest (2005) · Zbl 1199.46158
[65] Mǎntoiu, M., Essential spectrum and Fredholm properties for operators on locally compact groups, J. Oper. Theory, 77, 2, 481-501 (2017) · Zbl 1449.46058 · doi:10.7900/jot.2016may02.2110
[66] Nistor, V., Desingularization of Lie groupoids and pseudodifferential operators on singular spaces, Commun. Anal. Geom., 27, 1, 161-209 (2019) · Zbl 1411.35298 · doi:10.4310/CAG.2019.v27.n1.a5
[67] Pedersen, G., \(C^{\ast } \)-Algebras and Their Automorphism Groups, Volume 14 of London Mathematical Society Monographs (1979), London: Academic Press, Inc., London · Zbl 0416.46043
[68] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. IV. Analysis of Operators (1978), New York: Academic Press, New York · Zbl 0401.47001
[69] Teschl, G.: Mathematical Methods in Quantum Mechanics, Volume 157 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2014). With applications to Schrödinger operators · Zbl 1342.81003
[70] Vasy, A., Asymptotic behavior of generalized eigenfunctions in \(N\)-body scattering, J. Funct. Anal., 148, 1, 170-184 (1997) · Zbl 0884.35110 · doi:10.1006/jfan.1996.3053
[71] Vasy, A., Propagation of singularities in many-body scattering, Ann. Sci. École Norm. Sup. (4), 34, 3, 313-402 (2001) · Zbl 0987.81114 · doi:10.1016/S0012-9593(01)01066-7
[72] Vasy, A.: Geometry and analysis in many-body scattering. In: Inside Out: Inverse Problems and Applications, Volume 47 of Mathematical Sciences Research Institute Publications, pp. 333-379. Cambridge University Press, Cambridge (2003) · Zbl 1086.35508
[73] Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover Publications, Inc., New York (1950). Translated from the second (revised) German edition by H. P. Robertson, Reprint of the 1931 English translation
[74] Yserentant, H., Regularity and Approximability of Electronic Wave Functions, Volume 2000 of Lecture Notes in Mathematics (2010), Berlin: Springer, Berlin · Zbl 1204.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.