×

Analysis of Schrödinger operators with inverse square potentials. II: FEM and approximation of eigenfunctions in the periodic case. (English) Zbl 1390.65145

Summary: In this article, we consider the problem of optimal approximation of eigenfunctions of Schrödinger operators with isolated inverse square potentials and of solutions to equations involving such operators. It is known in this situation that the finite element method performs poorly with standard meshes. We construct an alternative class of graded meshes, and prove and numerically test optimal approximation results for the finite element method using these meshes. Our numerical tests are in good agreement with our theoretical results in the first part [E. Hunsicker et al., Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 55(103), No. 2, 157–178 (2012; Zbl 1299.35055)].

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35B65 Smoothness and regularity of solutions to PDEs
35B10 Periodic solutions to PDEs
35J10 Schrödinger operator, Schrödinger equation
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

Citations:

Zbl 1299.35055

References:

[1] S.Moroz and R.Schmidt, Nonrelativistic inverse square potential, scale anomaly, and complex extension, Ann Phys325 (2010), 491-513. · Zbl 1193.81024
[2] H.Wu and D. W. L.Sprung, Inverse‐square potential and the quantum votex, Phys Rev A49 (1994), 4305-4311.
[3] D.Arroyo, A.Bespalov, and N.Heuer, On the finite element method for elliptic problems with degenerate and singular coefficients, Math Comp76 (2007), 509-537. · Zbl 1112.65116
[4] S.Bidwell, M. E.Hassell and C. R.Westphal, A weighted least squares finite element method for elliptic problems with degenerate and singular coefficients, Math Comp82 (2013), 673-688. · Zbl 1264.65188
[5] V.Bonnaillie‐Noël and M.Dauge, Asymptotics for the low‐lying eigenstates of the Schrödinger operator with magnetic field near corners, Ann Henri Poincaré7 (2006), 899-931. · Zbl 1134.81021
[6] M.Costabel, M.Dauge and S.Nicaise, Corner singularities of Maxwell interface and eddy current problems, In Operator theoretical methods and applications to mathematical physics, Vol. 147 of Oper. Theory Adv. Appl., Birkhäuser, Basel, (2004), pp. 241‐256. · Zbl 1054.35100
[7] X.Gong, L.Shen, D.Zhang, and A.Zhou, Finite element approximations for Schrödinger equations with applications to electronic structure computations, J Comput Math26 (2008), 310-323. · Zbl 1174.65047
[8] H.Li, A‐priori analysis and the finite element method for a class of degenerate elliptic equations, Math Comp78 (2009), 713-737. · Zbl 1198.35111
[9] H.Li and V.Nistor, Analysis of a modified Schrödinger operator in 2D: regularity, index, and FEM, J Comput Appl Math224 (2009), 320-338. · Zbl 1165.65079
[10] T.Apel, S.Nicaise, and J.Schöberl, Crouzeix‐Raviart type finite elements on anisotropic meshes, Numer Math89 (2001), 193-223. · Zbl 0989.65130
[11] I.Babuška, R. B.Kellogg, and J.Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements, Numer Math33 (1979), 447-471. · Zbl 0423.65057
[12] C.Băcuţă, J. H.Bramble, and J.Xu, Regularity estimates for elliptic boundary value problems in Besov spaces, Math Comp72 (2003), 1577-1595. · Zbl 1031.65133
[13] L.Demkowicz, P.Monk, Ch.Schwab, and L.Vardapetyan, Maxwell eigenvalues and discrete compactness in two dimensions, Comput Math Appl40 (2000), 589-605. · Zbl 0998.78011
[14] H.Li, A.Mazzucato, and V.Nistor, Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains, Electron Trans Numer Anal37 (2010), 41-69. · Zbl 1205.65317
[15] L.Wahlbin, On the sharpness of certain local estimates for \(\overset{°}{H} ,^1\) projections into finite element spaces: influence of a re‐entrant corner, Math Comp42 (1984), 1‐8. · Zbl 0539.65078
[16] S.Brenner and R.Scott, The mathematical theory of finite element methods, Vol. 15 of Texts in Applied Mathematics, 2nd ed., Springer‐Verlag, New York, 2002. · Zbl 1012.65115
[17] P.Ciarlet, Basic error estimates for elliptic problems, In Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North‐Holland, Amsterdam, 1991, pp. 17‐352. · Zbl 0875.65086
[18] C.Schwab, P‐ And H_p‐finite element methods: theory and applications in solid and fluid mechanics, 1999, http://ukcatalogue.oup.com/product/9780198503903.do.
[19] E.Hunsicker, H.Li, V.Nistor, and V.Uski, Analysis of Schrödinger operators with inverse square potentials I: regularity results in 3D, Bull Math Soc Sci Math Roumanie (N.S.)55 (2012), 157-178. · Zbl 1299.35055
[20] V.Felli, A.Ferrero, and S.Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential, J Eur Math Soc (JEMS)13 (2011), 119-174. · Zbl 1208.35070
[21] V.Felli, E.Marchini, and S.Terracini, On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity, Discrete Contin Dyn Syst21 (2008), 91-119. · Zbl 1141.35362
[22] M. S. P.Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Academic Press Edinburgh, 1973. · Zbl 0287.34016
[23] V. A.Kondrat’ev, Boundary value problems for elliptic equations in domains with conical or angular points, Transl Moscow Math Soc16 (1967), 227‐313. · Zbl 0194.13405
[24] I.Babuška and A. K.Aziz, Survey lectures on the mathematical foundations of the finite element method, In The mathematical foundations of the finite element method with applications to partial differential equations, Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972, Academic Press New York, 1972, pp. 1‐359. With the collaboration of G. Fix and R. B. Kellogg. · Zbl 0268.65052
[25] T.Kato, Fundamental properties of Hamiltonian operators of Schrödinger type, Trans Amer Math Soc70 (1951), 195-211. · Zbl 0044.42701
[26] T.Kato, On the eigenfunctions of many‐particle systems in quantum mechanics, Comm Pure Appl Math10 (1957), 151-177. · Zbl 0077.20904
[27] E.Hunsicker, V.Nistor, and J.Sofo, Analysis of periodic Schrödinger operators: regularity and approximation of eigenfunctions, J Math Phys49 (2008), 083501, 21. · Zbl 1152.81481
[28] I.Babuška and J.Osborn, Eigenvalue problems, In Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North‐Holland, Amsterdam, 1991, pp. 641‐787. · Zbl 0875.65087
[29] I.Babuška and J. E.Osborn, Finite element‐Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math Comp52 (1989), 275-297. · Zbl 0675.65108
[30] I.Babuška and J. E.Osborn, Estimates for the errors in eigenvalue and eigenvector approximation by Galerkin methods, with particular attention to the case of multiple eigenvalues, SIAM J Numer Anal24 (1987), 1249-1276. · Zbl 0701.65042
[31] J. H.Bramble and J. E.Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math Comp27 (1973), 525-549. · Zbl 0305.65064
[32] J.Osborn, Spectral approximation for compact operators, Math Comput29 (1975), 712-725. · Zbl 0315.35068
[33] C.Bacuta, V.Nistor and L.Zikatanov, Improving the rate of convergence of high‐order finite elements on polyhedra. I. A priori estimates, Numer Funct Anal Optim26 (2005), 613-639. · Zbl 1121.35031
[34] J.Bey, Tetrahedral grid refinement, Computing55 (1995), 355-378. · Zbl 0839.65135
[35] C.Bacuta, V.Nistor, and L.Zikatanov, Improving the rate of convergence of high‐order finite elements on polyhedra. II. Mesh refinements and interpolation, Numer Funct Anal Optim28 (2007), 775-824. · Zbl 1122.65109
[36] C.Bacuta, V.Nistor, and L.Zikatanov, Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps, Numer Math100 (2005), 165-184. · Zbl 1116.65119
[37] S. C.Brenner, J.Cui, T.Gudi, and L. Y.Sung, Multigrid algorithms for symmetric discontinuous Galerkin methods on graded meshes, Numer Math119 (2011), 21-47. · Zbl 1229.65224
[38] S. C.Brenner, J.Cui, and L. Y.Sung, Multigrid methods for the symmetric interior penalty method on graded meshes, Numer Linear Algebra Appl16 (2009), 481-501. · Zbl 1224.65288
[39] R. E.Bank and L. R.Scott, On the conditioning of finite element equations with highly refined meshes, SIAM J Numer Anal26 (1989), 1383-1394. · Zbl 0688.65062
[40] H.Li, A note on the conditioning of a class of generalized finite element methods, Appl Numer Math62 (2012), 754-766. · Zbl 1237.65125
[41] D.Gilbarg and N. S.Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer‐Verlag, Berlin, 1977. · Zbl 0361.35003
[42] P.Ciarlet, The Finite Element Method for Elliptic Problems, Vol. 4 of Studies in Mathematics and Its Applications, North‐Holland, Amsterdam, 1978. · Zbl 0383.65058
[43] Th.Apel and B.Heinrich, Mesh refinement and windowing near edges for some elliptic problem, SIAM J Numer Anal31 (1994), 695-708. · Zbl 0807.65122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.