×

Data-driven peakon and periodic peakon solutions and parameter discovery of some nonlinear dispersive equations via deep learning. (English) Zbl 1484.35134

Summary: In the field of mathematical physics, there exist many physically interesting nonlinear dispersive equations with peakon solutions, which are solitary waves with discontinuous first-order derivative at the wave peak. In this paper, we apply the multi-layer physics-informed neural networks (PINNs) deep learning to successfully study the data-driven peakon and periodic peakon solutions of some well-known nonlinear dispersion equations with initial-boundary value conditions such as the Camassa-Holm (CH) equation, Degasperis-Procesi equation, modified CH equation with cubic nonlinearity, Novikov equation with cubic nonlinearity, mCH-Novikov equation, \(b\)-family equation with quartic nonlinearity, generalized modified CH equation with quintic nonlinearity, and etc. Moreover, we also study the data-driven parameter discovery of the CH equation with the aid of the single peakon These results will be useful to further study the peakon solutions and corresponding experimental design of nonlinear dispersive equations.

MSC:

35C08 Soliton solutions
35G31 Initial-boundary value problems for nonlinear higher-order PDEs

References:

[1] Fuchssteiner, B.; Fokas, A. S., Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4, 47-66 (1981) · Zbl 1194.37114
[2] Camassa, R.; Holm, D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521
[3] Olver, P. J.; Rosenau, P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53, 1900 (1996)
[4] Degasperis, A.; Procesi, M., Asymptotic integrability, (Symmetry and Perturbation Theory (Rome, 1998) (1999), World Sci. Publ.: World Sci. Publ. River Edge N.J), 23-37 · Zbl 0963.35167
[5] Degasperis, A.; Holm, D. D.; Hone, A. N.W., A new integrable equation with peakon solutions, Theoret. Math. Phys., 133, 1463-1474 (2002)
[6] Holm, D. D.; Staley, M. F., Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1+1 nonlinear evolutionary PDE, Phys. Lett. A, 308, 437-444 (2003) · Zbl 1010.35066
[7] Fokas, A. S., On a class of physically important integrable equations, Physica D, 87, 145-150 (1995) · Zbl 1194.35363
[8] Qiao, Z., A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47, Article 112701 pp. (2006) · Zbl 1112.37063
[9] Qiao, Z.; Xia, B.; Li, J. B., Integrable system with peakon, weak kink, and kink-peakon interactional solutions (2012), arXiv:1205.2028 · Zbl 1524.37064
[10] Novikov, V., Generalizations of the Camassa-Holm equation, J. Phys. A, 42, Article 342002 pp. (2009) · Zbl 1181.37100
[11] Mi, Y.; Liu, Y.; Huang, D.; Guo, B., Qualitative analysis for the new shallow-water model with cubic nonlinearity, J. Differ. Equ., 269, 5228-5279 (2020) · Zbl 1442.35351
[12] LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 436-444 (2015)
[13] Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning (2016), MIT Press · Zbl 1373.68009
[14] Dissanayake, M.; Phan-Thien, N., Neural-network-based approximations for solving partial differential equations, Commun. Numer. Methods Eng., 10, 195-201 (1994) · Zbl 0802.65102
[15] Lagaris, I. E.; Likas, A.; Fotiadis, D. I., Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw., 9, 987-1000 (1998)
[16] Lagaris, I. E.; Likas, A. C.; Papageorgiou, G. D., Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans. Neural Netw., 11, 1041-1049 (2000)
[17] Rudy, S. H.; Brunton, S. L.; Proctor, J. L.; Kutz, J. N., Data-driven discovery of partial differential equations, Sci. Adv., 3, Article e1602614 pp. (2017)
[18] Sirignano, J.; Spiliopoulos, K., DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys., 375, 1339-1364 (2018) · Zbl 1416.65394
[19] Bar-Sinai, Y.; Hoyer, S.; Hickey, J.; Brenner, M. P., Learning data-driven discretizations for partial differential equations, Proc. Natl. Acad. Sci. USA, 116, 15344-15349 (2019) · Zbl 1431.65195
[20] Han, J.; Jentzen, A.; E, W., Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. USA, 115, 8505-8510 (2018) · Zbl 1416.35137
[21] Raissi, M.; Karniadakis, G. E., Hidden physics models: machine learning of nonlinear partial differential equations, J. Comput. Phys., 357, 125-141 (2018) · Zbl 1381.68248
[22] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686 (2019) · Zbl 1415.68175
[23] Pawar, S.; Rahman, S. M.; Vaddireddy, H.; San, O.; Rasheed, A.; Vedula, P., A deep learning enabler for nonintrusive reduced order modeling of fluid flows, Phys. Fluids, 31, Article 085101 pp. (2019)
[24] Eivazi, H.; Veisi, H.; Naderi, M. H.; Esfahanian, V., Deep neural networks for nonlinear model order reduction of unsteady flows, Phys. Fluids, 32, Article 105104 pp. (2020)
[25] Chattopadhyay, A. A.; Guan, Y.; Hassanzadeh, P., Data-driven subgrid-scale modeling of forced Burgers turbulence using deep learning with generalization to higher Reynolds numbers via transfer learning, Phys. Fluids, 33, Article 031702 pp. (2021)
[26] Chen, Y.; Wu, D.; Duan, L.; Kang, Q., Machine learning method for the supplement, correction, and prediction of the nonlinear dynamics in pattern formation, Phys. Fluids, 33, Article 024110 pp. (2021)
[27] Xie, Y.; Zhao, X., Sloshing suppression with active controlled baffles through deep reinforcement learning-expert demonstrations-behavior cloning process, Phys. Fluids, 33, Article 017115 pp. (2021)
[28] Raissi, M.; Yazdani, A.; Karniadakis, G. E., Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations, Science, 367, 1026-1030 (2020) · Zbl 1478.76057
[29] Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G. E., DeepXDE: A deep learning library for solving differential equations (2019), arXiv:1907.04502
[30] Mao, Z.; Jagtap, A. D.; Karniadakis, G. E., Physics-informed neural networks for high-speed flows, Comput. Methods Appl. Mech. Engrg., 360, Article 112789 pp. (2020) · Zbl 1442.76092
[31] Zhou, Z.; Yan, Z., Solving forward and inverse problems of the logarithmic nonlinear Schrödinger equation with PT-symmetric harmonic potential via deep learning, Phys. Lett. A, 387, Article 127010 pp. (2021) · Zbl 1472.81089
[32] Wang, L.; Yan, Z., Data-driven rogue waves and parameter discovery in the defocusing NLS equation with a potential using the PINN deep learning, Phys. Lett. A, 404, Article 127408 pp. (2021), arXiv:2012.09984, 2020 · Zbl 07409914
[33] Pang, G.; Lu, L.; Karniadakis, G. E., fPINNs: Fractional physics-informed neural networks, SIAM J. Sci. Comput., 41, A2603-A2626 (2019) · Zbl 1420.35459
[34] Zhang, D.; Guo, L.; Karniadakis, G. E., Learning in modal space: Solving time-dependent stochastic pdes using physics-informed neural networks, SIAM J. Sci. Comput., 42, A639-A665 (2020) · Zbl 1440.60067
[35] Shin, Y.; Darbon, J.; Karniadakis, G. E., On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs (2020), arXiv:2004.01806 · Zbl 1473.65349
[36] Zhou, S.; Mu, C., The properties of solutions for a generalized b-family equation with peakons, J. Nonlinear Sci., 23, 863-889 (2013) · Zbl 1277.35134
[37] Grayshan, K.; Himonas, A. A., Equations with peakon traveling wave solutions, Adv. Dyn. Syst. Appl., 8, 217-232 (2013)
[38] Anco, S. C.; da Silva, P. L.; Freire, I. L., A family of wave-breaking equations generalizing the Camassa-Holm and Novikov equations, J. Math. Phys., 56, Article 091506 pp. (2015) · Zbl 1328.35162
[39] Himonas, A.; Mantzavinos, D., An ab-family of equations with peakon travelling waves, Proc. Amer. Math. Soc., 144, 3797-3811 (2016) · Zbl 1401.35268
[40] Hone, A. N.W.; Wang, J. P., Integrable peakon equations with cubic nonlinearity, J. Phys. A, 41, Article 372002 pp. (2008) · Zbl 1153.35075
[41] Mi, Y.; Mu, C., On the Cauchy problem for the modified Novikov equation with peakon solutions, J. Differ. Equ., 254, 961-982 (2013) · Zbl 1258.35065
[42] Recio, E.; Anco, S. C., Conserved norms and related conservation laws for multi-peakon equations, J. Phys. A, 51, Article 065203 pp. (2018) · Zbl 1387.35409
[43] Anco, S. C.; Recio, E., A general family of multi-peakon equations and their properties, J. Phys. A, 52, Article 125203 pp. (2019) · Zbl 1507.37090
[44] Gui, G.; Liu, Y.; Olver, P. J.; Qu, C., Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys., 319, 731-759 (2013) · Zbl 1263.35186
[45] Qu, C.; Liu, X.; Liu, Y., Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity, Comm. Math. Phys., 322, 967-997 (2013) · Zbl 1307.35264
[46] Guo, Z.; Liu, X.; Liu, X.; Qu, C., Stability of peakons for the generalized modified Camassa-Holm equation, J Differ. Equ., 266, 7749-7779 (2019) · Zbl 1411.35033
[47] Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M., Tensorflow: Large-scale machine learning on heterogeneous distributed systems, operating systems design and implementation (OSDI) (2016), arXiv:1603.04467v2
[48] Baydin, A. G.; Pearlmutter, B. A.; Radul, A. A.; Siskind, J. M., Automatic differentiation in machine learning: A survey, J. Mach. Learn. Res., 18, 1-43 (2018) · Zbl 06982909
[49] Liu, D. C.; Nocedal, J., On the limited memory BFGS method for large scale optimization, Math. Program., 45, 503-528 (1989) · Zbl 0696.90048
[50] Trefethen, L. N., Spectral Methods in MATLAB (2000), SIAM · Zbl 0953.68643
[51] Grayshan, K., Peakon solutions of the Novikov equation and properties of the data-to-solution map, J. Math. Anal. Appl., 397, 515 (2013) · Zbl 1256.35109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.